Chapter 4

Measurement of thermally ablated lesions using sonoelastography

4.1 Introduction

Thermal ablation techniques such as radiofrequency ablation (RFA) and high intensity focused ultrasound (HIFU) have attracted the interest of the research community for their capability to treat tumors as minimally invasive techniques [90,91]. In particular, promising results have been reported in early clinical trials for the treatment of hepatic tumors [92,93]. Imaging modalities that dynamically and
precisely monitor the lesion during and after the treatment are crucial for the success of thermal ablation therapies.

Ultrasound (US) is generally used for imaging guidance during the ablation procedures. It offers convenient real-time guidance of RFA needle placement, and it has the advantage of being cost-effective and readily available in most clinical sites. However, as an imaging modality to monitor the creation of the lesions, US did not exhibit good results [92]. Besides the low intrinsic contrast between treated and untreated tissues, artifacts due to the gas bubbles created during the treatment appear as hyper-echoic formations [13]. These formations do not represent accurately the extent of ablation. Gas bubbles resolve gradually, resulting in underestimation of the lesion size.

On the other hand, MRI capabilities on resolving soft tissues can be used to discriminate thermally ablated from healthy tissue [94], but the procedure becomes expensive and time consuming. Contrast enhanced CT imaging has also been proposed [95]. In this modality, thermally ablated lesions are depicted as hypo-attenuating regions. However, it also presents disadvantages such as ionizing radiation exposure, CT contrast agents’ side effects, and extended time of the procedure.
Thermally ablated lesions present an elevated elasticity modulus when compared to the surrounding tissue. Consequently, elasticity imaging modalities have been proposed as an alternative to monitor lesion creation and follow-up [96,97]. In particular, sonoelastography [6] is an imaging technique that estimates the peak displacement of the tissue under an externally induced mechanical harmonic excitation [7]. In a previous study, sonoelastography was used to detect and measure thermal lesions in vivo in exposed-liver experiments [13,14]. Manual measurement of these lesions in the sonoelastographic images is challenging due to diffuse boundary definition and artifacts formed by respiratory motion and perfusion. As a result, outlining and measuring the lesions becomes a time-consuming process with high variability.

Although several methods have been proposed to segment US images, only a few techniques have focused on elasticity images. Fahey et al. proposed the application of a simple threshold to acoustic radiation force impulse elastograms [98] with good result in phantom materials due to the high contrast between the inclusion and the background. Techavipoo et al. [99] proposed a semi-automated segmentation algorithm of thermal lesions for compression elastography images. The algorithm was based on thresholding and morphological operations and was applied to in vitro RFA lesions. Later, an automated algorithm was reported by the same group [100]. The approach consisted of a coarse-to-fine method which was initialized by template matching and then refined by an active contour model. This technique was evaluated
in 2D and 3D *in vitro* elastograms and a proof of concept was shown for 2D *in vivo* images.

In this chapter, a semi-automated algorithm for segmentation of thermal ablated lesions from 2D *in vivo* sonoelastographic images is described. The proposed algorithm is based on Level Set techniques which are initialized using Fast Marching methods. The parameters for the algorithm are selected using the Mumford-Shah functional [101]. The performance of the algorithm is compared against manual segmentation and data from gross pathology.

4.2 Characteristics of sonoelastographic images

In order to propose a segmentation algorithm to extract information from sonoelastographic images, it is important to understand their characteristics in terms of spatial resolution, contrast, noise and artifacts.

4.2.1 Noise characteristics

In the experiment described in Section 2.3, the ultrasound (US) transducer was vibrated while imaging a phantom, and therefore, it produced a uniform vibration field from the point of view of the imaging system. The analysis of these images in terms of the standard deviation and histogram distribution provides useful information regarding the noise characteristics of the sonoelastographic images.
For that purpose, the standard deviation and histogram distributions were obtained from 9 regions of interest (See Figure 4.1) in a series of images acquired at vibration frequency 200Hz, PRF 700Hz, WF5, and vibration amplitudes from 1 to 3 µm. The analysis reported a standard deviation of 16±2 (green) intensity values. In each case, the mean and mode values of the distribution in the histogram were very close (1 or 2 intensity values apart), and inspection of the histogram revealed a Gaussian distribution. Therefore, an additive Gaussian model can be used to characterize the noise in the sonoelastographic images.

![Figure 4.1](image)

Figure 4.1. A representative image showing the regions of interest which were analyzed to establish the noise characteristics of the sonoelastographic system.

4.2.2 Contrast

The contrast in sonoelastographic images depends on the elastic contrast between the lesion and the surrounding tissue, the geometry of the lesion, and the vibration frequency [8]. Figure 4.2 illustrates the relative displacement between a stiff 6mm x 6mm lesion and the surrounding tissue as a function of the elastic contrast between
them. As a reference, the vibration frequencies utilized in tissue are usually in the range from 60Hz to 300Hz. Therefore, there should be approximately 10% to 20% difference in the vibration amplitude between a lesion and its surrounding tissue. Using the results from Section 2.3, these differences should translate into 10 to 40 intensity values. The contrast in the images improves with larger-size lesions. In the case of a 8mm x 8mm lesion, there is a 50% difference in vibration amplitude which translates into 80 intensity values.

Figure 4.2. Relative amplitude between a lesion and the background as a function of the relative lesion stiffness. The lesion size is 6mm x 6mm.

4.2.3 Spatial resolution

Resolution in the sonoelastographic images depends on the vibration frequency, and on the Doppler imaging parameters. To establish the axial and lateral resolution of the images, the procedure illustrated in Figure 4.3 was followed. A two layer phantom
was imaged using the same conditions in which the imaging of the thermally ablated lesions occurred (i.e. vibrated at a combination of low frequencies: 105, 140, 175 and 210 Hz). The step response of the imaging system was fit into a sigmoid function and then its derivative was obtained to have an approximation of the impulse response of the system. The spatial resolution was estimated using the full width at half maximum criterion. Figure 4.4a shows an amplified image of the two layer phantom positioned to calculate the lateral resolution. The axial and lateral resolutions of the system were 1.1 ± 0.5 mm and 1.2 ± 0.3 mm, respectively.

Figure 4.3. Procedure to determine the resolution of sonoelastographic images.
Figure 4.4. Computation of the lateral resolution. A two layer phantom was imaged with sonoelastography (a) to obtain impulse response of the system (b). A plot of the step response of the system (blue dots) and the result of the curve-fitting process (red line) is presented in (c).

4.2.4 Artifacts

Ideally, the imaged tissue should be vibrated uniformly, and therefore, the decrease on vibration amplitude depends on the factors mentioned in Section 4.2.2. In practice, the position and strength of the external mechanical vibration sources generate a non-uniform vibration field which can be understood as a non-uniform illumination artifact. Furthermore, in ex vivo and in vivo experiments, two vibration sources are
usually used to focus the shear waves in the desired region of interest [118]. As a side-effect, the interaction of the two sources creates ‘modal patterns’ which are perceived as regions of constructive and destructive interference. Other artifacts in these images are produced by internal boundaries (e.g. between organs). These boundaries appear as voids in the images which could be interpreted as regions with elevated stiffness. Finally, respiratory motion can produce voids and increase the non-uniform vibration effect in the sonoelastographic images when acquired in vivo.

Figure 4.5 and 4.6 present examples of in vivo sonoelastographic images of RFA induced lesions in a porcine liver. Figure 4.5 illustrates an image degraded by respiratory motion, while Figure 4.6 exemplifies the effect of an organ boundary.

Figure 4.5. B-mode ultrasound (a) and sonoelastographic (b) images exemplifying the effect of respiratory motion. The yellow arrows mark the position of the RFA induced lesion.
Figure 4.6. B-mode ultrasound (a) and sonoelastographic (b) images exemplifying the effect of the boundary between organs (red arrow). The yellow arrows mark the position of the RFA induced lesion.

4.3 Algorithm description

The overall diagram of the proposed algorithm is presented in Figure 4.7a. The input image is first pre-processed in order to enhance its contrast, and reduce the effect of uneven illumination and noise. Subsequently, the user initializes the algorithm by selecting the center of the lesion. This input is used as the seed for a Fast Marching method that will output an initial guess of the segmentation of the lesion. A Level Set technique is then applied to refine the initial guess. This step is repeated several times varying the parameters of the Level Set. Each result is evaluated using the Mumford-Shah functional which finally decides the output of the algorithm. The last three steps in the algorithm compensate for the diffuse boundary and respiratory artifacts.
4.3.1 Pre-processing

The pre-processing stage consists of several steps shown in Figure 4.7b. First, the size of the image is reduced to match the resolution of sonoelastographic images. For the purposes of our experiments, the resolution of the images is approximately 1 mm in the axial and lateral directions. Histogram stretching is then applied. Normalization of the histogram of the image reduces the range of parameters to search in following stages. To reduce the effect of noise and uneven illumination in the images, anisotropic diffusion [102] and homomorphic [103] filters are used, respectively.

![Flow diagram of semi-automated algorithm (a) and pre-processing stage (b).](image-url)
4.3.2 Fast Marching method

The Fast Marching method [104] is a numerical form to solve the boundary value problem defined by:

\[F(x)|\nabla T(x)| = 1 \quad (4.1) \]

where \(F(x) \) is the speed function and \(T(x) \) is the time of arrival function. Given an interface which is always evolving in one direction (outwards or inwards), \(T(x) \) describes the time in which the front of the interface will arrive to location \(x \) given the speed function \(F(x) \). The latter function describes the speed of the front at a given location and Equation 4.1 establishes the relationship between them. For the proposed algorithm, \(F(x) \) is built from the image \(I(x) \) to be segmented as:

\[F(x) = \frac{1}{1 + e^{-|I(x)|}} \quad (4.2) \]

The user inputs the position of the seed for which \(T(x)=0 \).

4.3.3 Level Set segmentation

Level Set methods [104,105] are numerical techniques for tracking the evolution of interfaces (contours or surfaces). The interface is embedded as the zero Level Set of a higher dimensional function called the Level Set function \(\Psi(x,t) \). This function is then evolved and its behavior is defined by the following differential equation in a general case:
\[
\frac{d}{dt} \Psi = -\alpha A(x) \nabla \Psi - \beta P(x) |\nabla \Psi| + \gamma C(x) \kappa |\nabla \Psi| = 0
\]

(4.3)

where \(A \) is an advection term, \(P \) is a propagation term, and \(C \) is a spatial modifier term for the mean curvature \(\kappa \). The scalar constants \(\alpha, \beta, \) and \(\gamma \) are weights that determine the relative influence of each of the terms on the evolution of the interface. The evolving interface is obtained at any given time iteration by extracting the zero Level Set from the higher dimensional function. The main advantages of these techniques are that arbitrarily complex shapes can be modeled and topological changes are handled implicitly.

In the case of threshold Level Set methods, the propagation term is calculated as:

\[
P(x) = \begin{cases}
I(x), & \text{if } I(x) < U/2 \\
U - I(x), & \text{otherwise}
\end{cases}
\]

(4.4)

where \(U \) is the threshold which controls whether the interface grows or contracts. The final segmentation of the image is influenced by the intensity value of the sonoelastographic image and the smoothness of the contour. For our experiments \(\gamma \) was set to 50, \(\beta \) was set to 1 and \(\alpha \) was set to 0 since the advection term is not required. The high relative weight between the curvature and propagation terms is required to avoid leakage in the contour at places where the lesion edge is not well defined due to respiratory artifacts and modal patterns.
A problem with Level Set methods is that their result depends on the parameters used for a given segmentation problem. In the proposed algorithm, the Mumford-Shah functional is used to select the optimal parameters for a given image.

4.3.4 Mumford-Shah functional

For an image $I(x)$ and a contour $\Gamma(x)$, a simplified version of the Mumford-Shah functional [101] for the segmentation of an image in two regions is expressed as:

$$M(I(x), \Gamma(x)) = \nu \cdot l(\Gamma(x)) + \int_{\Gamma(x)<0} |I(x) - c_1|^2 + \int_{\Gamma(x)>0} |I(x) - c_2|^2$$

(4.5)

where $l(\Gamma(x))$ is the length of the contour $\Gamma(x)$, $\Gamma(x)<0$ represents the region in the image inside the contour which has a mean intensity value c_1, $\Gamma(x)>0$ represents the region in the image outside the contour which has mean intensity value c_2, and ν is a weight to determine the relative influence of the first term. This functional has a minimum when the inside and outside regions in the image are homogeneous and can be represented by their means. Also, the functional penalizes the length of the contour selected, and therefore it is minimal for regions with simpler form. To select the parameter ν, several values between 0.1 and 1.5 were evaluated in a few initial cases. The best results were obtained with $\nu=0.5$. This value is consistent with the specialized literature [101,102,104].
4.3.5 Selection of parameters

The main parameter that influences the final outcome of the algorithm is the threshold U in the Level Set stage. To select this parameter, several segmentations are performed over the image covering a range from 80 to 165. This range was selected after evaluating a few initial cases and was determined to work for the rest of them. The final output of the algorithm is selected with the parameter U which minimizes the Mumford-Shah functional.

4.4 Materials and methods

The performance of the algorithm was evaluated with simulated sonoelastographic images and then applied to \textit{in vivo} thermal lesions produced in a porcine liver.

4.4.1 Simulations

Figure 4.8 presents a block diagram of the process to generate simulated sonoelastographic images. Two images containing 2 regions each (inclusion and background) were modified to add an arbitrary contrast between the regions. Subsequently, illumination patterns extracted from \textit{in vivo} images were superimposed. A low pass filter was applied to simulate the point spread function expected from sonoelastographic images. Finally, white Gaussian noise was added. The response of the algorithm to different levels of contrast (10, 20, 30 and 40\%) was
evaluated in terms of the overlap ($A \cap B / A \cup B$) between the segmentation result (A) and the ground truth (B).

![Block diagram](image)

Figure 4.8. Block diagram for the generation of simulated sonoelastographic images.

4.4.2 In vivo experiments

Eleven RFA lesions and seventeen HIFU lesions were created in eleven porcine livers. In each case, the pig was anesthetized and prepared for surgery. Subsequently, its abdomen was shaved and a laparotomy was performed along the ventral midline and subcostal area to expose the liver. This procedure was performed by the professionals at the Division of Laboratory Animal Medicine (DLAM) following the Animal Use Protocol approved by the University Committee on Animal Resources (UCAR) at the University of Rochester.

For the RFA experiments, an RFA needle (LeVeen needle electrode, Boston Scientific, Natick, MA, USA) was inserted in the liver under US B-mode guidance. The needle was connected to an RF generator (RF 3000 Radiofrequency Ablation
System, Boston Scientific, Natick, MA, USA). Following an established treatment algorithm for clinical practice [106], an RFA lesion was created 1–2 cm beneath the liver surface. In the case of the HIFU experiments, a single-element focused transducer with a focal length of 6 cm and a diameter of 5 cm (Model H-101, Sonic Concepts, Inc., Woodinville, WA, USA) was used. The focal intensity of the HIFU transducer is about 1000 W/cm². A continuous sinusoidal signal (frequency: 1.1 MHz, voltage: 0.95 V) produced from a function generator (Model 3511A Pragmatic Instruments, San Diego, CA, USA) was fed to a radiofrequency amplifier (Model 2100L, Electronic Navigation Industries, Rochester, NY, USA) which drove the transducer to generate the HIFU beams. The position of the HIFU transducer was adjusted to 4 cm above the liver surface. The water chamber was used as the acoustic coupling between the transducer and the liver surface. The bottom of the water chamber was made of an acoustic transparent film and adjusted to barely touch the liver surface. Within 20 seconds, a single lesion was created. Various-sized lesions were created in the liver by adjusting the duration of HIFU exposure.

Two pistons (Model 2706, Brüel & Kjaer, Naerum, Denmark) were applied directly on the surface of the liver to generate the vibration field needed for sonoelastography. Input signals to the vibration sources were produced by a harmonic waveform generator (Model 3511A Pragmatic Instruments, San Diego, CA, USA) after amplification (Model 2706, Brüel & Kjaer, Naerum, Denmark). The pistons were vibrated at a combination of low frequencies (105, 140, 175 and 210 Hz). Co-
registered sonoelastographic and B-mode images were acquired using a linear probe array (M12L) connected to a Logiq 9 US scanner (General Electric Medical Systems, Milwaukee, WI, USA). The position and orientation of the probe over the liver was marked. After imaging, the pig was euthanized and the liver was excised. For each lesion, gross pathology was obtained approximately at the same position and orientation in which it was imaged. Subsequently, gross pathology was photographed and considered to be ground truth.

4.4.3 Image analysis

Three independent observers measured the area of each of the lesions from the sonoelastographic images using manual segmentation. One observer repeated this procedure three times. The same three observers repeated the process utilizing a semi-automatic segmentation algorithm. Similarly to manual segmentation, one observer measured the lesions three times with the semi-automatic algorithm. From all measurements, interobserver and intraobserver variability was assessed for manual and semi-automatic segmentation. In all cases, the time to perform the segmentation was recorded and the area of the lesions was compared to gross pathology.
4.5 Results

4.5.1 Simulations

Figure 4.9 shows two simulated sonoelastographic images produced with a contrast of 30% before (4.9a, 4.9c) and after (4.9b, 4.9d) the pre-processing stage of the algorithm. The resulting segmentation from the algorithm for each image is also depicted. In both cases, the selection of the parameter \(U \) based on the Mumford-Shah functional resulted in the segmentation with higher performance for the tested range. Table 4.1 presents the performance of the segmentation algorithm for the two simulated images at different contrast levels. As expected, the performance is proportional to the contrast between the inclusion and the background.

Figure 4.10 illustrates the change in values of the Mumford-Shah functional and the overlap metric as a function of the parameter \(U \). These plots correspond to the segmentation of the simulated sonoelastographic image presented in Figure 4.9a. Note that the maximum value of the overlap metric (i.e. best segmentation) is reached when the value of the Mumford-Shah functional is at its minimum.

4.5.2 In vivo experiments

The diameter of the eleven RFA lesions ranged from 5.8 mm to 20.5 mm, whereas the diameter of the seventeen HIFU lesions ranged from 9.9 mm to 23.3 mm. Table 4.2 summarizes the results for the RFA and HIFU in vivo experiments in terms of
accuracy, repeatability and time of segmentation. Results showed that the semi-automatic algorithm outperforms manual segmentation in all aspects evaluated. In particular, the time to measure a lesion reduces significantly from 3.5 minutes to 25 seconds.

Figure 4.9. Simulated sonoelastographic images before (a,c) and after (b,e) pre-processing. The resulting segmentation from the semi-automated algorithm is shown in red.
Table 4.1. Performance of the algorithm in terms of the percentage of overlap between the resulting segmentation and the ground truth for two simulated lesions.

<table>
<thead>
<tr>
<th></th>
<th>10% Contrast</th>
<th>20% Contrast</th>
<th>30% Contrast</th>
<th>40% Contrast</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lesion 1</td>
<td>92.3</td>
<td>94.3</td>
<td>96.4</td>
<td>96.9</td>
</tr>
<tr>
<td>Lesion 2</td>
<td>80.3</td>
<td>82.5</td>
<td>87.2</td>
<td>88.7</td>
</tr>
</tbody>
</table>

Figure 4.10. Values of the Mumford-Shah functional (a) and the overlap metric (b) with respect to a range of values for the parameter U. These plots correspond to the segmentation of the image in Figure 4.9a.
Table 4.2. Comparison between manual and semi-automatic segmentations for RFA and HIFU lesions.

<table>
<thead>
<tr>
<th></th>
<th># of lesions</th>
<th>Corr. Coeff.</th>
<th>Avg. error (mm)</th>
<th>Max. error (mm)</th>
<th>Intra-observer coeff. of variation (%)</th>
<th>Inter-observer coeff. of variation (%)</th>
<th>Avg. time per lesion (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFA Lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>11</td>
<td>0.86</td>
<td>1.4</td>
<td>5.9</td>
<td>2.9</td>
<td>5.5</td>
<td>3.9</td>
</tr>
<tr>
<td>Algorithm</td>
<td>11</td>
<td>0.93</td>
<td>0.8</td>
<td>2.4</td>
<td>0.4</td>
<td>0.9</td>
<td>0.4</td>
</tr>
<tr>
<td>HIFU Lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>14</td>
<td>0.86</td>
<td>2.2</td>
<td>8.2</td>
<td>4.5</td>
<td>5.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Algorithm</td>
<td>14</td>
<td>0.89</td>
<td>1.1</td>
<td>5.0</td>
<td>1.0</td>
<td>1.7</td>
<td>0.4</td>
</tr>
</tbody>
</table>

The semi-automated algorithm underestimated the diameter of the lesions by 0.4±1.9 mm when compared to manual segmentation. The correlation between both measurements was 0.80. The error in diameter between the algorithm segmentation and the gross pathology images was 0.95±1.1 mm whereas the manual segmentation error was 1.6±1.3 mm. The correlation between the algorithm and the gross pathology data was 0.89. The inter- and intra-observer variability for the RFA and HIFU experiments combined was significantly reduced when the algorithm was used. The inter-observer coefficient of variation was decreased from 4.1% to 1.1% and the intra-observer coefficient of variation was lowered from 3.1% to 1.1%. The f-ratios ($\sigma_{\text{man}}^2/\sigma_{\text{alg}}^2$) were 11.3 and 16.6 for the intra-observer and inter-observer cases respectively.
Matched sonoelastographic, B-mode and gross pathology images of a HIFU lesion are presented in Figure 4.11. The lesion is found at the top of the sonoelastographic image. The corresponding B-mode image shows a hyperechoic region due to the gas bubbles formed by the thermal process. The area of the hyperechoic region does not correspond to the area of the actual lesion. The gross pathology image confirms the presence of the lesion.

Figure 4.12 shows corresponding sonoelastographic, B-mode and gross pathology images of an RFA lesion. The lesion is found at the top left of the sonoelastographic image next to a vessel. The B-mode image depicts a hyperechoic region due to the gas bubbles formed by the RFA process. The area of the hyperechoic regions does not correspond to the area of the actual lesion. The gross pathology image confirms the presence of the lesion next to a vessel which has collapsed after the liver was excised.
Figure 4.11. Matched (a) sonoelastographic, (b) US B-mode, and (c) gross pathology images. The red arrows show the HIFU lesion. Note that the hyperechoic region in the B-mode image does not cover the whole area of the lesion.

Figure 4.12. Matched (a) sonoelastographic, (b) US B-mode, and (c) gross pathology images. The red arrows show the RFA lesion next to a vessel. Note that the hyperechoic region in the B-mode image does not cover the whole area of the lesion.
A comparison between manual and semi-automatic segmentation is illustrated in Figure 4.13. Three independent observers manually drew different outlines for the same lesion. The same observers initialized the semi-automatic algorithm by choosing the center of the lesion. Even though they selected different centers, the algorithm produced the same outline.

Figure 4.13. Comparison between (a) Manual and (b) Semi-automatic segmentation.

Three independent observers (shown in blue, pink and violet) manually outlined the lesion and selected the center of the lesion to initialize the semi-automatic algorithm.

4.6 Discussion

Results show that sonoelastography can be used to show and measure thermal ablated lesions. However manual segmentation of the lesions presents challenges in terms of
variability and time required. These problems make manual segmentation unfeasible for real-time monitoring of the ablation procedure.

The semi-automatic algorithm presented in this chapter improves the overall performance of sonoelastography in terms of accuracy and repeatability. In addition, the time to measure the lesion was considerably reduced by a factor of 8 from 3.5 minutes to approximately 25 seconds. Therefore, real-time measurements and monitoring of the lesions are possible. In this context, the algorithm needs to be initialized only at the beginning of the treatment. Subsequently, the resulting outline can be used as the input for the segmentation of the lesion in the following image during the length of the procedure.

The algorithm successfully integrates several image processing and computer techniques available in the literature. Although these methods have been proposed to solve several problems in image processing, they have not been applied to sonoelastographic or any other kind of elastographic images before. An important characteristic of the algorithm is that all parameters involved have been fixed but one: The threshold U. The selection of this parameter is performed automatically following a computer vision criterion that has been applied successfully to several segmentation problems [101]. The advantage of this approach is the reduction of variability (increased repeatability) in the measurement of the lesions. The
disadvantage, however, is that fixing some parameters limit the application of the algorithm. In particular, the selection of the relative weight between the curvature and propagation terms ($\gamma/\beta=50$) assumes that the lesions (or tumors) have a convex form. Any streaks or “arms” such as in a star-like lesion will not be measured accurately.

The algorithm has room for improvement. Template matching has been used previously to automate the initialization step of a segmentation algorithm for compression elastography [100]. This could further reduce the intervention of the user. However, this approach may fail in our experiments due to the presence of respiratory and boundary artifacts. Alternatively, in the case of RFA treatment, detection of the RFA needle in B-mode images could be used to initialize the algorithm. The selection of the parameter U can be understood as an optimization process. Currently, an extensive search is performed to find the best value of the parameter. The segmentation time of the algorithm could be reduced even more by applying optimization techniques such as maximum descent or simulated annealing algorithms. Finally, if the final measurements require an increased resolution, a pyramid approach [102] to segmentation may speed up the time to perform them.
4.7. Summary

This chapter introduces a novel approach for semi-automated segmentation of lesions (or tumors) in sonoelastographic images. The algorithm pre-processes the image to compensate for noise and non-uniform vibration fields. The approach is based on Fast Marching and Level Set methods. Optimal parameter selection is performed by an adaptive process derived from the Mumford-Shah functional. The algorithm is applied to in vivo sonoelastographic images from twenty five thermal ablated lesions created in porcine livers. The estimated area is compared to results from manual segmentation and gross pathology images. Resulting segmentations of the algorithm show good agreement with pathology data (r²=0.89) and manual segmentation results (r²=0.8). More importantly, inter- and intra-observer coefficients of variability are reduced (f-ratios=11.3 and 16.6, respectively) and the time to segment a sonoelastographic image is decreased by a factor of 8 from 3.5 minutes to 25 seconds. These results suggest that sonoelastography in combination with the segmentation algorithm has the potential to be used as a complementary technique to conventional ultrasound for thermal ablation monitoring and follow-up imaging.