Table of Contents

Part I – Theoretical Background

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Phrase Models in Standard Tunes</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Prototypes of Form</td>
<td>84</td>
</tr>
<tr>
<td>3</td>
<td>The Hexamodal System</td>
<td>153</td>
</tr>
</tbody>
</table>

Part II – Analytical Fallout: Keith Jarrett’s Treatment of Standard Tunes

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Reharmonization of Standards</td>
<td>209</td>
</tr>
<tr>
<td>5</td>
<td>Analysis of the Extended Solo Piano Introductions</td>
<td>268</td>
</tr>
</tbody>
</table>

Appendices

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Phrase Models and Standard Tunes</td>
<td>313</td>
</tr>
<tr>
<td>B</td>
<td>Prototypes and Standard Tunes</td>
<td>330</td>
</tr>
<tr>
<td>C</td>
<td>Bibliography</td>
<td>339</td>
</tr>
<tr>
<td>D</td>
<td>Fake Books References</td>
<td>345</td>
</tr>
<tr>
<td>E</td>
<td>Selected Discography</td>
<td>346</td>
</tr>
</tbody>
</table>
PART I
THEORETICAL APPLICATIONS

Chapter 1

Phrase Models In Standard Tunes

Phrases and Phrase Models

As David Beach has noted, phrases are “the basic units of tonal motion.”¹ For Beach and most other music theorists, the tonal motion of a phrase can be explained in terms of its underlying melodic, contrapuntal, and harmonic structure. A phrase model is a description of these underlying structures. Such models can be transformed either by reinterpreting or reharmonizing particular notes or by elaborating these notes with other notes, progressions, diminutions, etc.

Figure 1.1.a gives an example of a simple phrase model from Common-Practice music.

Figure 1.1

This model consists of a melodic pattern \(^3-^4-^2-^1\) supported by a lower counterpoint that moves in parallel thirds before converging on the tonic \(^1-^2-^7-^1\), and supporting harmony I-ii\(^6\)-V\(^7\)-I. Next, the model in Figure 1.1.b is reharmonized by reinterpreting the ii\(^6\) chord chromatically as bII\(^6\) and by substituting a bVI chord for the final I. Alternatively, the model in Figure 1.1.c. further elaborates the motion from I to ii\(^6\) by filling in the progression with an intervening chord. In this case the soprano \(^3\) and the alto \(^1\) are harmonized by a vi chord.

One of the most striking features of Figure 1.1 is that each transformation of the model preserves the same basic rules of tonal voice leading and harmony as the model itself. In this case, the intervening vi chord does not violate any traditional rules of tonal voice leading and harmony; it does not, for example create parallel perfect octaves and fifths with adjacent chords, nor does it violate the rules of functional syntax. Since we know that the model shown in Figure 1.1.a satisfies traditional rules of tonal voice leading and harmony and since we also know that the processes of transformation preserve those rules, we know that the resulting progressions shown in Figures 1.1.b and 1.1.c will constitute a grammatically correct tonal progression.

Although the phrase model shown in Figure 1.1 is typical of Common-Practice music and, according to Heinrich Schenker is frequently a model for an entire composition, it is not so typical in standard tunes. The term “standards” refers to primarily American “popular” tunes performed frequently by countless musicians working from ca. 1920 - 1960. The “original” version of a tune corresponds to the tune together with a chord progression provided by the composer (though that may be difficult to determine, depending on the publisher; in some cases, the voice leading is completely realized by the composer); the “lead sheet” or “jazz” version presents the melodic line with harmonization represented by jazz chord symbols. Lead sheets are gathered together in “fake books.” The validity and accuracy of fake books is questionable, as often being illegal productions, they contain numerous mistakes.

In the case of standard tunes, there appear to be a finite number of typical phrase models, each with its own distinctive melodic structure, essential jazz counterpoint, and supporting harmonies. The melodic structure is dominated by a repertory of melodic patterns. These melodic patterns are characteristic successions of melodic tones common to particular families of standard tunes. An essential jazz counterpoint is a guide-tone line comprising the 3rd and the 7th of participating chords. The supporting harmonies are constrained both by certain principles of chord formation as well as by various rules of chord progression and function.

Although we will be classifying phrase models according to differences in the melodic structure, the essential jazz counterpoint, and supporting harmonies, it is important to stress that these properties are irrevocably intertwined. The behavior of the melodic patterns and the essential jazz counterpoint is clearly shaped by their supporting harmonies just as the sense of chord progressions is dictated by the behavior of the melodic patterns and the essential jazz counterpoint. This intimate relationship means that if we attempt to understand the phrase structure of standard tunes in exclusively melodic/contrapuntal terms or from a purely harmonic perspective, that understanding will necessarily be incomplete. By explaining a tune’s melodic/contrapuntal structure as well as its harmonic basis, phrase models provide a sophisticated and comprehensive way to account for the tonality of standard tunes.

2 I will examine only the chorus sections of standards since they are the most frequently performed sections of tunes. Verses are omitted from the current discussion, as they are in conventional jazz performance practice.
Besides classifying phrase models according to their melodic, contrapuntal, and harmonic structure we can also describe them in terms of their rhetorical layout. Typically, an eight-measure phrase model has three main elements: 1) an initial chordal projection which we will call phrase identifier, 2) harmonic departure, and finally, 3) cadential closure. Normally all three elements are present but under special circumstances phrase models can be truncated. For instance, the B section of a standard tune with a complex harmonic setting may utilize only parts of a phrase model without a cadential closure or a harmonic departure. We will refer to this type of phrase model as “incomplete.”

It should be clear from Figure 1.1 and from the ensuing discussion that my concept of phrase models draws heavily on Schenker’s approach to analyzing tonal music. The concept of prototypical progressions and their representation in music occupies a central place in Schenkerian theory. This concept as applied to jazz, however, does not correspond to the Schenker’s understanding of global prototypes and by extension, does not use the same modus operandi of generating subsequent levels of musical structure. In jazz, the notion of prototypes is a local phenomenon and represents the middleground level of standard tunes. Since jazz music has different properties than classical with 1) respect to overall rules of voice leading, and 2) behavior of stable and unstable notes, comparison of the two idioms reveals that phrase models in jazz are distinct from conventional tonal syntax.

The goal of this chapter is to explain in more detail the nature of phrase models in standard tunes. The chapter begins with a discussion of the melodic structure of phrase models by focusing on some specific melodic patterns. Next, it describes the essential jazz counterpoint which plays an indispensable role in the processes of reharmonization and elaboration of chord progressions. The chapter then considers the basic chord types used to harmonize standard tunes and explains how these chords are arranged into idiomatic progressions. Special attention will be paid to the ii-V-I progression and some of its more interesting realizations. Having cataloged the most common phrase models found in standard tunes, the chapter ends by offering practical applications of this general approach.

Helmholtz’s system of registral designation employed in this dissertation is in common use and involves upper and lowercase letters, and numerical subscripts and superscripts. An overview of the system is given in Figure 1.2.

Figure 1.2

Pitch Registral Designations

Melodic Patterns

In most phrases from standard tunes, melodies are structured in fairly predictable ways. The melodies consist of patterns that basically move by step and elaborate certain primary scale degrees, either diatonically or chromatically. These elaborations usually involve neighbor and passing motion. The development of phrase models draws upon the contrapuntal elaboration of the melodic patterns summarized in Chart 1.1. The most important melodic patterns start on \(^1\) and \(^3\).

Chart 1.1

PHRASE MODELS

DIATONIC MELODIC PATTERNS

\(^1-^7-^1\)

\(^1-^2-^1-^7-^1\)

\(^3-^2-^1\)

\(^3-^2-^1-^7-^1\)

CHROMATIC MELODIC PATTERNS

\(^1-^b2-^1-^7-^1\)

\(^3-^b3-^2-^b2-^1-^7-^1\)

\(^3-^b2-^2-^1-^7-^1\)

However, melodic patterns starting on \(^5\) and \(^8\) can also occur but are less hierarchically significant. We will discuss them later in the chapter. Incidentally, melodic patterns beginning on \(^1\) and \(^3\), along with those starting on \(^5\) and \(^8\) and proceeding toward \(^1\), \(^2\), \(^3\), and/or other notes, constitute families of prototypical shapes corresponding to the design of specific melodies found in standard tunes. Since phrase models can be derived by harmonizing the soprano voice, the role of counterpoint in producing tonal function is of the utmost importance. The manipulation of chordal function depends on the contrapuntal elaboration of a given soprano line.

The tonality of melodic patterns draws upon traditional tonal features such as, 1) root movement by fifths, 2) monotonal key organization, 3) a clear sense of tonal direction, and 4) symmetrical phrase organization. Even though jazz syntax has idiomatic rules, the basic principles of voice leading remain largely operative as in Common-Practice tonality: 1) stepwise motion, 2) convergence to chord tones, and 3) preparation of dissonances. The repertory of standard tunes represents a broad spectrum of harmonic and melodic prototypes (unified as a whole), the study of which enables us to reassess our knowledge of the structure of tunes. By examining the treatment of phrase models by Keith Jarrett in later chapters, we can decipher mechanisms underlying his transformations of standard tunes.
Essential Jazz Counterpoint

When harmonizing a melodic pattern, most jazz musicians start by conceiving another essential line that supports the melody. This line is often referred to as “guide-tone” line and typically employs 3rds and 7ths of the corresponding chords and reflects the harmonic structure of a tune. Comparison of structural properties of “guide-tone” line and the essential jazz counterpoint indicates some similarities, the most important of which being the analogous status and membership of pitches comprising either “guide-tone” line or the essential jazz counterpoint. Among the most noticeable differences, however, the ability to generate new levels of musical structure gives the essential jazz counterpoint the status of a conceptual entity. Therefore, the essential jazz counterpoint can be elaborated by inserting auxiliary chords and/or by reinterpreting melodic patterns as members of other harmonic formations. The behavior of the essential jazz counterpoint determines the direction of a phrase and coordinates its basic harmonic setting. Along with the melodic pattern – a separate melodic strand – they reify the fundamental harmonic syntax. Any harmonic changes to the background structure of the phrase, resulting from the interpretation of the soprano notes as members of closely or distantly related chords, does not influence the overall design of the progression. Such harmonic modifications result in changing local harmonic functions. Various reinterpretations of the melodic notes as members of other chords are regarded as local events which do not affect the large-scale harmonic structure of tunes. For instance, 1 can participate in a number of local contexts, yet its global function – as a member of the governing tonic – remains unchanged at deeper levels of the tune and is confirmed with a final cadence. At surface levels, however, the “tonic” can certainly be a local dissonance.

The voice leading of the essential jazz counterpoint features mostly stepwise motion with parallel and/or oblique relationships between voices. In chords related by fifths, for instance, a sustained note of the essential jazz counterpoint swaps its position from the 3rd to the 7th or vice versa, as shown in Figure 1.3. As a result, harmonic progressions in jazz syntax, just as in Common-Practice music, feature normative progressions by fifths.

Figure 1.3
The structure of a major chord in Figure 1.3 uses a distinct contrapuntal motion from 7th to 6th in order to emphasize a less dissonant extension, and to avoid parallel perfect fifths between the guide tones of I and ii. However, the occurrence of parallel perfect fifths (and octaves) on the musical surface, however, is more tolerated in jazz than in Common-Practice tonality. The use of parallel perfect 5ths as “orchestration sonority” does not affect voice-leading restrictions which remain largely operative.

Figure 1.4 illustrates the behavior of the essential jazz counterpoint within the context of the diatonic ii-V-I progression.

Figure 1.4

Melodic Pattern ^1-^7-^1

Figure 1.4 displays the ^1-^7-^1 melodic pattern and a corresponding essential jazz counterpoint line. The soprano line features a neighbor motion; ^1-7-^1, that includes a repeated ^1 at the beginning of the progression. The essential jazz counterpoint comprises two inner voices, each characterized by a descending stepwise motion, and/or linked by a common tone. B^1-a^1 is a contrapuntal expansion of the tonic; the sustained f^1 changes its role from the 3rd of D minor to the 7th of G^7. The melodic motion, f^1-e^1, constitutes an expected resolution as the 7th of the corresponding dominant descents to the 3rd of the tonic. The tones of the essential jazz counterpoint, along with the soprano voice, are invertible; that is, the function of the progression determined by the bass and a specific melodic pattern remains invariant upon reordering the upper three voices. This proves to be an effective technique for producing different voicings for the same chordal formations. Figure 1.5 portrays this scenario.
Figure 1.5

Invertible Jazz Counterpoint

Auxiliary chords elaborating the ^1-^7-^1 melodic pattern, however, participate in transformation of the fundamental progression, and belong either to middleground or foreground levels of musical structure. Figures 1.6.a and 1.6.b show these options.

Figure 1.6.a

Melodic Pattern ^1-^7-^1 - Auxiliary Chords

The generation of IV in Figure 1.6.a constitutes a viable possibility; the resolution from b^1 to a^1 is reinterpreted within the confines of the C major – F major progression: b^1, the 7th of C major resolves to a^1, the 3rd of F major. Incidentally, e^1-a^1 are also the guide tones of F^#ø7 which can trigger an even more complex elaboration of the ^1-^7-^1 melodic pattern as demonstrated in Figure 1.6.b.
Following the method of reinterpreting melodic notes and/or members of the essential jazz counterpoint, other harmonic progressions can be produced. A, for instance, can be reinterpreted as a b9 of F#7, thus spanning an even more complex elaboration of the 1-7-1 melodic pattern.

Chord Types

The repertory of standard tunes is imbued with a broad spectrum of harmonic formations, the structure of which makes extensive use of the primary and secondary extensions. As a result, a distinctive harmonic syntax originates which differs considerably from Common-Practice music in which the triad is the basic building block of the musical structure. Since effective music theories are context-dependent (that is, their analytical claims pertain to a specific musical idiom), a successful theory of jazz has to account for its idiosyncratic syntax. The behavior of certain elements of that syntax deviate significantly from what we expect in a “classical” idiom. Nowhere is the difference between jazz and Common-Practice syntaxes more evident than in the treatment of 7th chords and the interval of a 7th (stable or unstable).

In modal counterpoint, the 7th was of contrapuntal origin and resulted from a passing motion between consonant sonorities.4 The controversy regarding the function of the 7th chord

4 In the current discussion, the emphasis is placed on the role of the 7th chord and the interval of a 7th. In the course of the history of music theory, there were other equally controversial issues. The classification of intervals, for instance, was quite complicated depending on beliefs of particular theorists. John of Garland and Franco of Cologne differentiated between degrees of dissonances, recognized the imperfect consonances, and discussed the relationship of the placement of dissonances and consonances with relation to the modal rhythmic idiom. Perfect consonances were: unison and octave; imperfect: major and minor thirds, intermediate: the 4th
began emerging in the eighteenth century when Jean-Philippe Rameau, the promulgator of the 7th chord as an “invertible” formation posited that it can stand as an independent sonority. The 7th, a “dissonant note,” was a harmonic phenomenon and had no urgency to resolve to a consonance before the next harmony. This postulate contradicted the views of the figured bass theorists, whose claims, summarized by C. P. E. Bach, read that “[dissonances]’ natural harshness must be mollified by preparation and resolution; that is, the dissonant tone must be played, previously, as a consonance and it must succeed to a consonance.” Johann Kirnberger synthesized the positions of Rameau and Bach. By emphasizing melodic and harmonic aspects of the progression, Kirnberger was able to distinguish between essential and non-essential dissonances.

Functional tonality established a hierarchical dependence of dissonances upon more stable triads and seventh chords. The treatment of the 7th within four-part chords was strictly regulated and its behavior, as well as other unstable intervals, depended on the surrounding context. The 7th in a ii6/5 chord, however, was usually prepared usually by a suspension. As Common-Practice music evolved from the Baroque to the Classical style, the dominant seventh gradually entered into the family of independent sonorities.

The tolerance for the acceptance of even more unstable sonorities (with striking chromatic alterations) in the Romantic era paved the way to a freer treatment of dissonances. Wagner’s use of 7th chords was well on the way to “the emancipation of dissonances.” Given the changes in harmonic practice that took place in the 19th and early 20th centuries, the acceptance of V7 and ii7 in jazz as essential stable harmonies constitutes a relatively modest

and 5th. Imperfect dissonances are: M6th, m7th, intermediate dissonances M2, m6; and perfect dissonances are m2nd, A4th, and M7th. The status of the perfect 4th from being a consonant to dissonant changed with the emergence of triads in the 15th century. See Sarah Fuller, “Organum – discantus – contrapunctus in the Middle Ages,” The Cambridge History of Western Music Theory, ed. T. Christensen, (United Kingdom: Cambridge University Press, 2002), pp. 477-502.

The controversy regarding the function of 7th chords can be traced back to theoretical debates of the eighteenth century. See Rameau’s Traité de l’harmonie (1722), Nouveau système (1726), Dissertation (1732), and Génération harmonique (1737). Rameau proposes that the function of the chord depends on its position within a progression. By invoking the concept of double emplois, the ii7 is either a contextually dependent sonority or an independent formation. Rameau posits the concept of double employment of the dissonance, which accounts for the role of ii7 or IV with the added 6. In order to preserve the motion of the fundamental bass by fifths this chord acquires either a ii7 role provided it is followed by a V7, or IV6 if it proceeds to I. Its independent status, however, relies on the fifth motion produced by the fundamental bass.

J. P. Kirnberger, The Art of Strict Musical Composition (New Haven, Yale University Press, 1982). Essential (wesentlich) dissonances are members of the dissonant essential chords. The resolution of these chords requires a change of harmonic function. Non-essential (zufällige) dissonances result from suspension; hence, their resolution occurs over the same fundamental bass.

theoretical proposition. Chart 1.2 differentiates between musical idioms, ranging from strict counterpoint to jazz.

Chart 1.2

TONALITY – FAMILY OF LANGUAGES

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>16c. – MODAL</th>
<th>FUNCTIONAL TONALITY</th>
<th>NON-FUNCTIONAL TONALITY</th>
<th>JAZZ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Intervallic Triadic</td>
<td>Monotonal</td>
<td>Polytotnality</td>
<td>Modal Mainstream</td>
</tr>
<tr>
<td></td>
<td>Strict Cpt. Cons./Diss.</td>
<td>Chord/Non-chord Tones Triads/D7</td>
<td>Polychords</td>
<td>Primary/Secondary Ext. 7th chords-normative</td>
</tr>
<tr>
<td></td>
<td>Stable/unstable</td>
<td></td>
<td>Polychords</td>
<td></td>
</tr>
</tbody>
</table>

The function and treatment of the 7th is more relaxed in jazz than in Common-Practice music, since it combines harmonic and melodic dimensions of the progression controlled by the rules of voice leading. In jazz, the 7th constitutes the primary extension; that is, a fundamental chord member whose mandatory presence conveys the quality of chords. The behavior of the 7th in the context of a typical jazz progression is controlled and prepared by the preceding consonant interval. These two a priori claims, the independent role of the ii7 and the required presence of primary extensions within chordal formations, are fundamental in jazz syntax.

In jazz harmony, the 7th or the 6th (but not occurring simultaneously in the structure of a chord) are primary extensions and constitute essential members of chords. The connection between vertical and horizontal elements in jazz is regulated by the chord/scale relationship. There are three basic chord types, major, minor, and dominant; these relate to the Ionian, Dorian/Aeolian, and Mixolydian scales, respectively. The derivation of primary extensions and their quality can be understood as a “filling-in” of a downward intervallic span, 1-5 of a corresponding scale, with passing tones. Other types of chords such as, half-diminished and diminished have the same extensions as the basic chords.

9 This assertion is consistent with Rameau’s position.
10 This discussion lays the groundwork for the development of more complex secondary extensions. See p. 18.
Primary Extensions of Major Chords

The major-quality chord is associated with the Ionian scale. The stepwise melodic descent \(^1-^5\) shown in Figure 1.7 includes passing \(^7\) and \(^6\).

Figure 1.7

Primary Extensions of Major Chords

Ionian

Although both \(^7\) or \(^6\) may occur as essential members in jazz formations, the major 6\(^{th}\) has a more stable quality than the major 7\(^{th}\). The unstable character of the 7\(^{th}\) arises from its proximity to \(^1\) and its propensity to resolve up by semitone. The resolution down to the 6\(^{th}\) begins a contrapuntal descent toward \(^5\). Frequently, a major sonority (especially the final tonic) includes the major 6\(^{th}\) as a more stable member of a major chord and functions as the primary extension, or features a contrapuntal expansion from \(^7\) to \(^6\). Since the 7\(^{th}\) or the 6\(^{th}\) can function as primary extensions of the major chord, the coexistence of the 6\(^{th}\) with the 7\(^{th}\) within the major chord classifies the 6\(^{th}\) as a 13\(^{th}\) (secondary extension). In such a case, as shown in Figure 1.8, \(^6\) functions as the secondary extension – the natural 13\(^{th}\).

Figure 1.8

C6/9 and Cma7(13)

\[\text{C}\%6 \quad \text{Cma7}(\frac{13}{5})\]

\(^{11}\) Other associations will be discussed elsewhere.
Primary Extensions of Dominant Chords

The dominant formation has a number of scalar associations, the most fundamental of which is the Mixolydian scale. Figure 1.9 illustrates a linear descent $^1-5$ within the C Mixolydian environment.

Figure 1.9
Primary Extensions of Dominant Chords

Mixolydian

![Mixolydian scale diagram]

The passing notes b^{b1} and a^1 fill the space between the chord tones, $^1-5$. The tendency of b^{b1} is to resolve down to a^1. The resolution to a^1, however, requires a change of function from the dominant to the tonic. The simultaneous occurrence of both b^{b1} and a^1 within the dominant structure is also possible. In such an instance, a^1 functions as a major 13th and is usually placed above the 7th. The opening of Bill Evans’ solo version of “Lucky To Be Me” shown in Example 1.1, displays a rootless structure of C^{13} with both the 7th (primary extension) and the 13th (secondary extension).

Example 1.1

Bill Evans: Lucky To Be Me (m.1)

![Example 1.1 musical notation]

12 Other scales associated with dominant chords will be examined in Chapter 3.
13 By rearranging notes of a dominant structure, it is possible to obtain formations with the 13th adjacent to the root, or in other, less common combinations.
Example 1.1 shows a striking feature of the initial harmonic gesture: the absence of chordal roots from the structure of chords. These omissions are relatively common in the post-Bill Evans jazz syntax and do not disturb the functional definition of a chord. The content of the left hand includes the essential jazz counterpoint with a stepwise voice leading. The anacrusis contains a rootless C\(^{13}\) with the primary extension b\(^{b}\) placed a major 7\(^{th}\) below a\(^{1}\). In sum, this brief example demonstrates the voice leading of the essential jazz counterpoint, the distribution of primary and secondary extensions, and basic rules for producing chordal voicings.

Primary Extensions of Minor Chords

The types of primary extensions allowable in a minor chord depend on its position and function within a chordal progression. The minor chord behaving as the minor tonic corresponds to either Aeolian or Dorian modes and the minor chord functioning as a predominant is usually related to the Dorian mode.\(^{14}\) According to these associations, the choice of the primary extensions will differ depending on the quality of the 6\(^{th}\). Figure 1.10 demonstrates a \(^{1\rightarrow 5}\) linear descent for minor chords.

Figure 1.10

Primary Extensions of Minor Chords

Dorian

\[\text{Dorian} \]

\[^{1} \quad m7th \quad M6th \quad ^{5} \]

The 7\(^{th}\) in both cases is a relatively independent chord member and has no urgency to resolve up to \(^{1}\) as it does in a major chord. Since the 6\(^{th}\) in Dorian mode is a half step away from the minor 7\(^{th}\), a contrapuntal exchange between these two primary extensions often takes place. The minor 6\(^{th}\) in the Aeolian environment shown in Figure 1.11, however, functions as the chromatic upper neighbor of \(^{5}\) and adds a darker shading to the minor chord. Because of the proximity of these primary extensions, their inclusion within a single chord obeys the same rules as in a major chord, with special attention given to proper note spacing.

\(^{14}\) This statement is very basic and subject to numerous exceptions.
The simultaneous use of both extensions within the minor chord is possible only if the proper voicing is implemented, as demonstrated in Figure 1.12.

Table 1.1 summarizes the occurrence of primary extensions within five basic chord types. Additionally, each chord type is classified as having a particular harmonic function.
Table 1.1

Table of Primary Extensions

<table>
<thead>
<tr>
<th>Function</th>
<th>Major Tonic</th>
<th>Dominant</th>
<th>Predominant</th>
<th>Minor Tonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chord</td>
<td>Major</td>
<td>Dominant</td>
<td>Minor</td>
<td>Diminished</td>
</tr>
<tr>
<td>Scale</td>
<td>Ionian</td>
<td>Mixolydian</td>
<td>Dorian</td>
<td>Octatonic</td>
</tr>
<tr>
<td>Primary Extentions</td>
<td>7, 6</td>
<td>b7</td>
<td>b7, 6</td>
<td>7</td>
</tr>
</tbody>
</table>

Secondary Extensions

Secondary extensions are additional members of jazz formations and constitute diatonic and/or chromatic, and upper and/or lower neighbors of chord tones. Figure 1.13 displays the derivation of secondary extensions of the five chord types.
Table 1.2 examines the distribution of secondary extensions within the five basic chord types.
Table 1.2

Table of Secondary Extensions

<table>
<thead>
<tr>
<th>Function</th>
<th>Major Tonic</th>
<th>Dominant</th>
<th>Predominant</th>
<th>Minor Tonic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chord</td>
<td>Major</td>
<td>Dominant</td>
<td>Minor b5</td>
<td>Diminished</td>
</tr>
<tr>
<td>Scale</td>
<td>IONIAN, LYDIAN</td>
<td>MIXOLYDIAN, ALTERED</td>
<td>LOCRIAN #2</td>
<td>OCTATONIC, AEOLIAN, MELODIC MINOR</td>
</tr>
<tr>
<td>Secondary Extensions</td>
<td>9, #11, 13</td>
<td>9, b9, #9, #11, b13, 13</td>
<td>9, 11, 13</td>
<td>9, 11, 13, Major 7, 9, #11, b13, 13</td>
</tr>
</tbody>
</table>

The ii-V-I Progression

The ii-V-I is the most important progression in jazz, and its harmonic implications within the structure of standard tunes include: 1) tonal closure at the end of a tune, 2) modulatory links to secondary key areas, 3) local tonicizations, and 4) harmonic alterations. Arguably, the origins
of this progression are contrapuntal and result from forward and/or backward projections of the triad. Figure 1.14 shows the harmonic reduction of the opening two measures of “I Can’t Get Started With You” (by Ira Gershwin and Vernon Duke – Example 1.2).

Example 1.2

I Can't Get Started With You - mm.1-2

![Example 1.2](image)

Figure 1.14

I Can't Get Started With You - mm.1-2

The design of the melody uses the ^1-^6-^5 melodic pattern, and the ii-V-(I) progression is derived from the forward projection of the governing triad. The use of vi constitutes a surface elaboration and does not affect the fundamental structure of the progression.

The harmonic reduction of the first four measures of “Night and Day” (by Cole Porter – Example 1.3), illustrated in Figure 1.15, indicates backward projection of the triad over the 5-4-3 melodic pattern. Note that the tonic is not reached until m. 3 of the tune.

Example 1.3

Night And Day - mm.1-4

Figure 1.15

Night And Day - mm.1-4

The notation used in subsequent figures loosely draws on Schenkerian practice. With respect to the use of specific note values within a graph, I will employ notation that will capture the hierarchy between levels of musical structure. Note heads indicate the order in which tones are generated from a prototype; beams and slurs specify grouping. Tones are abstract entities that can be manifest in physical form as notes, or can give rise to various elaborations, melodic and contrapuntal. Half notes indicate key areas; quarter notes connected to the beam designate tones comprising a linear span; eighth notes specify elaborations of the linear span and also show predominant key areas; small black notes without stems usually indicate the members of the essential jazz counterpoint.

But a few changes from the Schenkerian conventions are worth noting. In particular, I will use lower case Roman numerals to specify a minor quality of chords (major chords will take upper case Roman numerals). By applying this convention, I want to emphasize the uniqueness of jazz harmonic syntax and the relationship between a chord’s quality and available extensions. Roman numerals are supplemented with Arabic numbers used in the same manner as in the figured bass notation. Since the ii-V-I progression constitutes the most important progression in
jazz harmony, I will use “—” to bracket the progression. In addition, the same bracket will be used to group other crucial components of a progression such as phrase identifiers of various phrase models. An incomplete ii-V will be marked as “––– - - - “. The tonicization of a secondary key area (if the tonicizing progression is ii-V) will be shown by placing a ii-V in parenthesis; and “ ---->” will indicate tonicized key areas.

Special Case I: ^3-^2-^1 and ii-V-I

To account for different harmonic settings, scale degrees participating in the melodic descent can be displaced and/or repeated. Figures 1.16.a/b/c/d/e demonstrate a number of diatonic ii-V-I progressions based on a modified ^3-^2-^1 melodic pattern marked by a harmonic displacement and the reinterpretation of the soprano notes as members of different harmonic formations.

Figure 1.16.a
Figure 1.16.b

Special Case I - (b)

Figure 1.16.c

Special Case I - (c)
Figure 1.16.d

Special Case I - (d)

PT - Passing Tone

Figure 1.16.e

Special Case I - (e)
Figure 1.16.a reveals the basic form of the progression: \(^32\) is supported by \(^7\) on its way to \(^2\), the 5th of \(V\). In Figure 1.16.b, however, \(^3\) becomes the 9th of \(\text{ii}^7\) on its way to \(^2\), the 5th of \(V\). In Figure 1.16.c, \(^3\) is prolonged over three harmonic changes and is reinterpreted as the 9th of \(\text{ii}^7\) and the 13th of \(V\) before resolving, via passing \(^2\) to \(^1\). Figure 1.16.d features backward projection of the tonic triad as \(^3\) is displaced and becomes the 9th of \(\text{Dm}^7\). Finally, Figure 1.16.e illustrates an incomplete melodic pattern, \(^3-2\), with \(^2\) functioning as the secondary extension, the 9th of \(I\).

As has been pointed out, the \(^3-2-1\) descent can be considered as a local or global event. Its global function corresponds to the structural ii-V-I progression usually occurring at the end of the tune. The local significance of the \(^3-2-1\) descent depends on the surrounding context and may have a number of harmonic realizations. For instance, in the key of C major, \(^3-2-1\) may be interpreted as a melodic pattern in the context of A minor, F major, and other key areas. It is the behavior of the essential jazz counterpoint that determines the choice of a particular secondary key area. Figures 1.17.a and 1.17.b demonstrate the possibility of reharmonizing \(^3-2-1\) as \(^5-4-3\) in A minor and \(^7-6-5\) in F major.

\(^{16}\) The global character of the ii-V-I is manifested by its cadential function at the end of standard tunes.
The progressions I-vii\(^7\)-III\(^7\)-vi\(^7\) (Figure 1.17.a) and I-v\(^7\)-I\(^7\)-IV (Figure 1.17.b), show viable harmonic realizations for a local \(^3\)-\(^2\)-\(^1\). All of these progressions can be transformed using common reharmonization techniques and modal mixture alterations. One of the many harmonic signatures of standard tunes is the propensity for chains of applied dominant sevenths and pervasive chromaticism. Therefore, ii\(^7\) often becomes an applied dominant 7\(^\text{th}\) through modal mixture alteration (a minor third is altered to become major). This contrapuntal modification adds both chromaticism and forward motion into the structure of the progression. Another obvious alteration, shown in Figure 1.18, results from borrowing \(^b6\) from the parallel minor mode. In such an instance, ii\(^7\) will take a lowered 5\(^\text{th}\); the label “ø” is reserved for a half diminished 7\(^\text{th}\) chord; the sonority usually functions as a predominant within the minor ii\(^9\)-V-i progression.\(^{17}\)

\(^{17}\) The “classical” reader should note that jazz players most often refer to the \(^9\) as a “min.\(^7\) (b5),” a terminology consistent with the ubiquitous “dom.\(^7\) (b5).”
One additional harmonic change that intensifies the motion toward the tonic is commonly known as tritone substitution. The guide tones of the diatonic dominant 7th become (after swapping their places) the guide tones of the chromatic dominant seventh whose root is a tritone away. Tritone substitution necessarily involves a “misspelling” of one member of the tritone when it is carried out, thereby offering evidence of jazz harmony’s dependence on 12-tone equal temperament. Essentially the same process was available in 19th-century harmony, but the ultimate dependence of that system on a 7-note diatonic substructure kept the distinction alive. Thus, there is no “II°b7” in conventional theory. Figure 1.19 illustrates this possibility.

Figure 1.18

Minor ii°-V-i

Figure 1.19

Tritone Substitution

Db7 = Tritone Substitution = TS
The 3rd and the 7th of G7, after enharmonic respelling, swap places and become the 7th and the 3rd of Db7, respectively. Figure 1.20 shows the application of the dominant tritone substitution within the ii-V-I progression.

Figure 1.20

The use of bII7 in place of the diatonic V7 reinforces the arrival of the tonic by stepwise motion in all the voices. The contrary motion between the bass and the soprano is especially effective and resembles the resolution typical of a Phrygian cadence. The tritone substitution chromatically modifies an overall diatonic progression. The same mechanics governing the generation of dominant tritone substitutions can be applied to predominant minor chords. The Db7 can be prepared in two ways: 1) by the diatonic ii–D minor, or 2) by its (tritone substitution) predominant Abm7. The second preparation results from exchanging the diatonic ii with its chromatic counterpart a tritone away. Figures 1.21 and 1.22 demonstrate the projection of the tonic via ii-V, II-V and their tritone substitutions.
Figure 1.21

I7- bvi7-bII7-I7 Progression

Figure 1.22

I7-bVIb7-bIIb7-I7 Progression

Tritone Substitution of ii7-V7

Tritone Substitution of II7-V7
Special Case II: ^5-, ^8-lines and ii-V-I

^5- and ^8-lines are relatively common in standard tunes.\(^{18}\) By accepting four-part formations with primary extensions as stable tones, the range of permissible harmonic supports is much broader than it is in conventional triadic harmony.\(^{19}\) Figures 1.23.a/b/c suggest the production of the ii-V progression based on the ^5- 4- 3 melodic pattern.

Figure 1.23.a

Special Case II: ^5-^4-^3 Melodic Pattern (a)

\(^{18}\) ^3-^2-^1 becomes less and less idiomatic in the late 19\(^{th}\)-century, setting the precedence for its limited status in jazz harmony.

\(^{19}\) The reduction of harmonic structure to triads has obvious limitations for supporting ^5- and ^8-line.
In Figure 1.23.a, \(^5\) becomes the 3\(^{rd}\) of ii\(^7\) and then is repeated as the 7\(^{th}\) of V\(^7\). In Figure 1.23.b, \(^5\) is held over ii\(^7\) and becomes the 11\(^{th}\) of ii before resolving down to \(^4\). Figure 1.23.c features backward projection of the tonic triad with \(^5\) being harmonically displaced and functioning as the 11\(^{th}\) of D minor.
Figures 1.24.a and 1.24.b suggest two transformations of the complete 5-line.

Figure 1.24.a

5-line (a)

![Image of figure 1.24.a](image)

Figure 1.24.b

5-line (b)

![Image of figure 1.24.b](image)

Figure 1.24.a indicates the prolongation of the tonic triad with local tonicizations of IV and vi. The repeated notes in the soprano descent serve as members of the interpolated ii-V progressions. Figure 1.24.b shows a large-scale motion from I to IV via vi.
Jazz Rule of the Octave

The rule of the octave was an important practical tool for an aspiring musician in the Baroque and Classical Periods, since it helped master the art of harmonization. Similarly in jazz, by practicing different harmonic settings for the 8-line, a musician can acquire competence in handling various scalar segments. The rule of the octave in jazz constitutes a pioneer work in the field of music theory and has important corollaries, practical and pedagogical. Figures 1.25.a/b/c/d/e suggest a number of harmonic choices for the 8-line in gradually increasing levels of complexity.

Figure 1.25.a

Figure 1.25.b

^8-line (b)

Figure 1.25.c

^8-line (c)
Figure 1.25.d

^8-line (d)

Figure 1.25.e

^8-line (e)
Figures 1.24 and 1.25 have shown the expansion of jazz harmonic syntax by transforming \(^5\)-, and \(^8\)-lines. The essential jazz counterpoint, with its mostly stepwise motion, governs the large-scale design of the progression, and influences the local tonicizations of the secondary key areas. The structure of the \(^8\)-line features an arpeggiation of the tonic triad, with repeated passing notes becoming members of auxiliary formations.

Survey of Phrase Models

With the exception of a few publications on the subject of standard tunes, the theoretical literature on phrase structure in jazz repertoire remains rather limited. Wilder, in his monumental survey, catalogs an impressive number of tunes; each with a succinct description.\(^{21}\) Allan Forte is less systematic in his study, yet more analytically revealing, attempting to integrate Schenker-based Common-Practice theory with idiosyncrasies of popular music to discuss harmonic, melodic, and textual properties of standard tunes.\(^{22}\) The formal organization and the harmonic language of standard tunes display a considerable degree of uniformity; that is, a particular background or even middleground harmonic setting may control the structure of a number of tunes. A melodic pattern serves as a functional determinant enabling a contrapuntal projection of a large-scale harmonic progression. In an increased order of complexity the melodic patterns are: 1) diatonic: \(^1\-7\-1, \(^1\-2\-7\-1, \(^3\-2\-7\-1, \(^3\-2\-7\-1; \) and 2) chromatic: \(^1\-b2\-7\-1, \(^3\-b3\-2\-7\-1, \(^3\-b2\-7\-1.\) Note that \(^\#2\) within the \(^3\-2\-7\-1\) melodic pattern indicates harmonic motion to the mediant key, major or minor. Scale degree \(^\#2,\) therefore, becomes the major 7\(^{th}\) of the mediant key.

\(^1\-^7\-^1\) Diatonic Phrase Models

Figure 1.26.a/b/c/d/e include five diatonic possibilities resulting from the prolongation of \(^1\) via a \(^1\-7\-1\) melodic pattern.

\(^{23}\) Consult Chart 1.2.
Figure 1.26.a

\(^1-^7-^1\) Diatonic Phrase Model (a)

Figure 1.26.b

\(^1-^7-^1\) Diatonic Phrase Model (b)
Figure 1.26.c

^1-^7-^1 Diatonic Phrase Model (c)

Figure 1.26.d

^1-^7-^1 Diatonic Phrase Model (d)
Figures 1.26.a and 1.26.b constitute two familiar cases of forward and backward projection of the triad resulting from the juxtaposition of the ♯1-♯7-♯1 melodic pattern over the ii-V-I progression. Figure 1.26.c features a harmonic motion from IV to I; its predominant preparation results from the reinterpretation of both the soprano voice and the essential jazz counterpoint as members of F major. Figure 1.26.d shows the so-called “turnaround” progression. Scale degree 1 in Figure 1.26.d, is repeated and becomes the 3rd of A minor. The continuation of the progression explores the diatonic cycle of fifths. Figure 1.26.e omits the initial tonic and begins on vi. The last progression features a very important harmonic design for a phrase model with a large-scale harmonic motion from vi to I.

Figure 1.27.a illustrates the background structure of the I-vi-ii-V-I progression. Other transformations of the turnaround progression could be produced by alternating diatonic chords with simple and secondary mixture formations demonstrated in Figure 1.27.a, and by freely incorporating tritone substitute changes as shown in Figures 1.27.b/c/d.
Figure 1.27.a

I-vi-ii-V Progression

Figure 1.27.b

I-vi-ii-V (Tritone Substitution)
Five harmonic progressions from Figure 1.26 constitute the extent of the diatonic phrase models with different opening progressions but identical cadential closures. In order to account
for the possibility of harmonic departures from the prevailing tonal center, longer melodic patterns need to be examined.

^1-^2-^1-^7-^1 Diatonic Phrase Models

The melodic pattern ^1-^2-^1-^7-^1 is a double-neighbor figure with important harmonic implications. Figures 1.28.a and Figure 1.28.b show two common phrase models.

Figure 1.28.a

^1-^2-^1-^7-^1 Diatonic Phrase Model (a)

![Figure 1.28.a](image)

Figure 1.28.b

^1-^2-^1-^7-^1 Diatonic Phrase Model (b)

![Figure 1.28.b](image)
Figures 1.28.a and 1.28.b demonstrate forward projection of the tonic triad via cycles of descending fifths starting on iii^7 and vii^7, respectively.

$^3^-^2^-^1^7^-^1$ Diatonic Phrase Models

The melodic pattern $^3^-^2^-^1^-^7^-^1$ can be realized in a number of ways. First, as shown in Figure 1.29.a, IV functions as an upper neighbor of iii^7. Second, as demonstrated in Figure 1.29.b, the tonic is prolonged, via iii^7, on route to IV. These two phrase models exhibit similar contrapuntal properties, yet their distinct use within standard tunes sets them apart.

Figure 1.29.a

$^3^-^2^-^1^-^7^-^1$ Diatonic Phrase Model (a)
Figures 1.30.a/b/c/d/e/f/g/h/i display the diatonic phrase models discussed thus far; phrase models are presented in a modified form in order to illustrate their relevance to the phrase structure of standard tunes.
Figure 1.30.a
Phrase Model 1

Initial Projection Harmonic Departure

\[\text{Cadential Closure} \]

- ii V I progression (or Initial Projection)
- incomplete ii V progression
- Harmonic Departure
- [] initial projection (or phrase conclusion)
Figure 1.30.b
Phrase Model 2

Figure 1.30.c
Phrase Model 3
Figure 1.30.d
Phrase Model 4

Initial Projection
Harmonic Departure

\[\text{Cadential Closure} \]

Figure 1.30.e
Phrase Model 5

Initial Projection
Harmonic Departure

\[\text{Cadential Closure} \]
Figure 1.30.f
Phrase Model 6

Initial Projection Harmonic Departure

$\text{I}^7 \rightarrow 6\text{iii}^7 \text{VI}^7 \text{ii}^7^7 \text{V}^7 \text{I}^7 \rightarrow 6$

Cadential Closure

Figure 1.30.g
Phrase Model 7

Initial Projection Harmonic Departure

$\text{I}^7 \rightarrow \text{vii}^7 \text{iii}^7 \text{vi}^7 \text{ii}^7 \text{V}^7 \text{I}^7 \rightarrow 6$

Cadential Closure
Figure 1.30.h

Phrase Model 8

Harmonic Departure

Initial Projection

I\(^7\) IV\(^7\) iii\(^7\) vi\(^7\) ii\(^7\) V\(^7\) I\(^7\)

Cadential Closure

Figure 1.30.i

Phrase Model 9

Harmonic Departure

Initial Projection

I\(^7\) iv\(^3\) iii\(^7\) IV\(^7\) ii\(^7\) V\(^7\) I\(^7\)

Cadential Closure
Each of the phrase models outlined in Figures 1.30 consists of three significant harmonic events: 1) initial projection, 2) harmonic departure, and 3) cadential closure. These events are controlled by the behavior of the essential jazz counterpoint. As has been pointed out, the first A section of standard tunes in the AABA form is eight measures long and usually features a motion toward the dominant at the end of the phrase (rarely to other key areas). In order to account for that, 7 of a phrase model can remain unresolved until the end of the tune. Since the phrase models appear in their most fundamental form, harmonic transformations of these progressions correspond to the middleground and foreground levels of musical structure. Some of these transformations have already been mentioned and include mixture chords and tritone substitutions of dominant and predominant chords. Other transformations result from the saturation of chromatic embellishments (passing and/or neighbor), the addition of interpolated ii-V progressions, tonicizations of secondary key areas, and inversions of chordal formations.

$^1-^b2-^1-^7-^1$ Chromatic Phrase Models (Modal Mixture)

Figure 1.31.a and Figure 1.31.b suggest contrapuntal settings of the $^1-^b2-^1-^7-^1$ melodic pattern. The introduction of a chromatic note as a fundamental member of the melodic pattern, opens possibilities for large-scale harmonic expansions and allows for the production of even more elaborate phrase models.

Figure 1.31.a

Phrase Model 10

```
Initial Projection

Harmonic Departure

^1

CUN

I$^7-^6$ $b$V$^7$ $b$III$^b^7$ $b$VI$^7$

Cadential Closure

^7 $ii^7$ V$^7$ I$^7-^6$

CUN - Chromatic Upper Neighbor
```
In Figure 1.31.a, the upper chromatic neighbor, \flat^b2, becomes a minor 3rd of $b\text{vii}^7$, and in Figure 1.30.b, it is a minor 7th of $b\text{iii}^7$. The tonicization of $b\text{VI}$ in Figure 1.30.a is an important instance of modal mixture. The chromatic ii-V of $b\text{VI}$ suggests a harmonic departure from the diatonic environment, therefore constituting a salient feature of this progression. In Figure 1.30.b, the upper chromatic ii-V of the diatonic ii-V can be regarded as a “side-stepping” substitution; however, its idiomatic function within some standard tunes confirms its independent status, as shown above. Jazz players often use a “side-stepping” technique to induce a sense of temporary departure from a diatonic key area. “Side-stepping” is a harmonic and/or melodic technique of incorporating chromatic upper or lower regions a minor second away from the governing tonal center.24

24 Hugo Riemann in “Ideen zu einer ‘Lehre von den Tonvorstellungen,’” *Jahrbuch der Musikbibliothek Peters* (1914/1915), pp. 1-26, speaks of Max Reger’s experiments of C against D^b etc. as motivated by variant in intonation.
\(^3-^2-^1\) Chromatic Phrase Models (Tonicization)

Figure 1.32 features a chromatic descent from \(^3\) to \(^1\). The contrapuntal elaboration of this descent tonicizes two secondary key areas, \(\text{bVII}\) and \(\text{bVI}\).

Figure 1.32

Phrase Model 12

Figure 1.33 demonstrates a contrapuntal embellishment of the \(^3-^2-^1-^7-^1\) melodic pattern.
In Figure 1.33, \(\hat{3} \) becomes the 7th of \(\#\text{iv}^6 \) and resolves to the major 3rd of \(\text{VII}^7 \). This phrase model often includes a harmonic departure on \(\text{III} \). The harmonic departure, thus, often functions as a secondary key area of numerous standard tunes.

In addition to diatonic elaborations of the \(\hat{3}-\hat{2}-\hat{1} \) descent (as shown in Figures 1.29), the progression of back-related dominant 7ths constitute a plausible contrapuntal realization of the phrase. Figure 1.34 illustrates this possibility.
Figure 1.35.a and 1.35.b suggest a couple of harmonic transformations of back-related dominant-7th progressions. These transformations utilize tritone substitutions and local predominant minor chords. A number of similar variants can be produced by combining mixture chords with various tritone substitutions.
Figure 1.35.a

III7-VI7-II7-I - Transformation (a)

\[^3 \quad ^2 \quad ^1 \]

III\(^7\) \rightarrow TS \quad VI\(^7\) \rightarrow TS \quad II\(^7\) \rightarrow TS \quad V\(^7\) \rightarrow TS \quad I\(^7\) \rightarrow 6

TS - Tritone Substitution

Figure 1.35.b

III7-VI7-II7-I - Transformation (b)

\[^3 \quad ^2 \quad ^1 \]

ii\(^7\) \quad V\(^7\) \quad ii\(^7\) \quad V\(^7\) \quad ii\(^7\) \quad V\(^7\) \quad ii\(^7\) \quad V\(^7\) \quad I\(^7\) \rightarrow 6

ofVI \quad ofII \quad ofV \quad ofI
Figure 1.36 recaps all of the chromatic expansions of the major triad.

Figure 1.36

Phrase Model 14

To sum up, the phrase models in Figures 1.30 and 1.36 show the harmonic and contrapuntal structure of numerous phrase types corresponding to the A, B, and/or C sections of standards tunes. Since the background level of the phrase structure features either an incomplete motion to the dominant or a complete cadential tonic harmony, the types of cadential closures along with the initial projection (i.e. phrase identifier), constitute the foundational properties of phrase models in standard tunes. The phrase identifier usually triggers a specific tonal direction of a phrase. The possibility that an unexpected harmonic turn may occur during the harmonic departure further differentiates among various phrase models. The harmonic departure (HD) denoted by $||$, indicates a motion away from the initial triadic projection. Figure 1.37 outlines the structural properties of a phrase model.

Figure 1.37

Phrase Model – Outline

<table>
<thead>
<tr>
<th>Phrase Identifier (Initial Projection)</th>
<th>Harmonic Departure</th>
<th>Cadential Closure</th>
</tr>
</thead>
<tbody>
<tr>
<td>[x]</td>
<td>-</td>
<td>ii7–V7 [I]</td>
</tr>
</tbody>
</table>

Contrary to the design of complete phrase models, the structure of an incomplete phrase model omits one or more of its components. For instance, the incomplete phrase model is usually shorter with a harmonic motion to other than the tonic or the dominant key areas at the end of a phrase. Its truncated form often prevents the occurrence of a harmonic departure.
Practical Applications

The conclusion of this chapter examines phrase models and their manifestations in standard tunes. Table 1.3 groups all the phrase models and specifies their basic harmonic schemes.

Table 1.3
PHRASE MODELS

PHRASE MODEL 1	\([I-ii^7-V^7] - () - ii - V - (I)\)
PHRASE MODEL 2	\([ii^7-V^7] - () - ii - V - (I)\)
PHRASE MODEL 3	\([IV-ii^7-V^7] - () - ii - V - (I)\)
PHRASE MODEL 4	\([I-vi^7-ii^7-V^7] - () - ii - V - (I)\)
PHRASE MODEL 5	\([vi^7] - () - ii - V - (I)\)
PHRASE MODEL 6	\([I-(ii^7-V^7)-ii] - () - ii - V - (I)\)
PHRASE MODEL 7	\([(I-vii^7-(III^7)-V^7)] - () - ii - V - (I)\)
PHRASE MODEL 8	\([I-IV^7-iii^7-vi^7] - () - ii - V - (I)\)
PHRASE MODEL 9	\([I-iii^7-IV^7] - () - ii - V - (I)\)
PHRASE MODEL 10	\([I-bvi^7-ibIII^7-bVI^7] - () - ii - V - (I)\)
PHRASE MODEL 11	\([I-biii^7-bVI^7] - () - ii - V - (I)\)
PHRASE MODEL 12	\([I-(ii-V)-bVII-(ii^7-V^7)-bVI] - () - ii - V - (I)\)
PHRASE MODEL 13	\([(I)-(ii^7-V^7)-III] - () - ii - V - (I)\)
PHRASE MODEL 14	\(III^7-VI^7-II^7-(I)\)		

Phrase Model 1

Among numerous phrase types permeating the structure of standard tunes, Phrase Model 1 occurs most frequently. Since the governing tonic arrives at the end of a tune, its possible
absence at the end of the first two A sections does not affect the general outline and the membership of a progression.

The A section of “Exactly Like You” by Jimmy McHugh and Dorothy Fields (for the lead-sheet version consult The New Real Book, Volume II, Sher Music CO., 1991, p. 98) is based on Phrase Model 1 without a harmonic departure. A voice-leading reduction of mm. 1-8 shown in Figure 1.38, indicates the phrase identifier, I-II-V, the prolongation of the dominant, and the cadential closure.

Figure 1.38

Phrase Model 1

![Phrase Model 1 Diagram]

Although II in m. 3 functions as an applied dominant, its presence does not change the fundamental framework of the model itself. The dominant harmony is prolonged in mm. 5-6; the tonic in mm. 7-8 indicates a cadential closure. Measures 1-8 of “Exactly Like You” correspond to a basic form of Phrase Model 1 without harmonic departure to secondary key areas.

Phrase Model 2

The first two A sections of “I Love You” by Cole Porter (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 203) are based on a different harmonic progression and conform to Phrase Model 2 and an incomplete Phrase Model 2 with a harmonic departure on III, respectively.

Figure 1.39 shows a harmonic reduction of the tune’s first A section with its characteristic off-tonic beginning.
In Figure 1.39, the tonic is reached in m. 3 following the ii9-V progression. Note that the quality of the phrase identifier does not affect the structure of the model itself; mm. 1-8 belong to the Phrase Model 2 category.

Figure 1.40 displays a harmonic reduction of the second A section of “I Love You.”

In Figure 1.40, the tonic is reached in m. 3 following the ii9-V progression. Note that the quality of the phrase identifier does not affect the structure of the model itself; mm. 1-8 belong to the Phrase Model 2 category.

In Figure 1.40, the tonic is reached in m. 3 following the ii9-V progression. Note that the quality of the phrase identifier does not affect the structure of the model itself; mm. 1-8 belong to the Phrase Model 2 category.
Although the phrase identifier is identical to the first A section, an abrupt motion from the tonic toward the mediant key suggests the harmonic departure. The lack of a cadential closure (conclusive or inconclusive) in F constitutes the phrase’s incomplete form.

Phrase Model 3

The A section of “Almost Like Being In Love” by Frederick Lowe and Alan Jay Lerner (for the lead-sheet version consult *Just Standards Real Book*, Warner Bros. Publications, 2001, p. 24) adheres to Phrase Model 3 without a harmonic departure. The chief characteristic of the model is its off-tonic beginning in the subdominant, major or minor.

In tunes based on this harmonic progression, the characteristics of the melody seem to be at odds with the underlying harmonic scheme. The melodic ascent up to d\(^2\) in “Almost Like Being In Love” suggests the 3\(^{rd}\) of I. Instead, the 3\(^{rd}\) of I is realized as the 7\(^{th}\) of IV. Almost identical situation happens in A sections of other tunes such as, “Just Friends,” “After You’ve Gone,” and “Copenhagen” all of which based on Phrase Model 3. Figure 1.41 provides a harmonic reduction of “Almost Like Being in Love.”

Figure 1.41

Almost Like Being In Love - mm.1-8

Phrase Model 3

![Initial Projection](image)

Cadential Closure
The tonic in Figure 1.41 is reached by arrival in m. 3, and the subsequent measures of the A section continue to prolong the tonic space.

Phrase Model 4

Figure 1.42 and 1.43 suggest harmonic frameworks of these tunes.

Figure 1.42

Have You Met Miss Jones? - mm.1-8

Phrase Model 4

```
<table>
<thead>
<tr>
<th>^1</th>
<th>^7</th>
<th>^1</th>
<th>^7</th>
<th>^1</th>
</tr>
</thead>
</table>

*Initial Projection*

```

| I7 | vi7 | ii7 | V7 | ii7 | V7 | I7 |---|---|
|---|---|---|---|---|---|---|---|

Cadential Closure
Measure 8 in both of these phrases features an inconclusive harmonic caesura on V. The phrase identifier in mm. 1-2 indicates the prolongation of the tonic via the I-vi-ii-V progression. In “Have You Met Miss Jones?” the F♯o7 chord can be used as a rootless D7(b9) – a viable substitution for the diatonic vi. Since F♯o7 replaces the diatonic vi at the surface level, Phrase Model 4 accounts for both harmonic possibilities.

Other tunes, such as “Ain’t Misbehavin” by Andy Razaf, Thomas “Fats” Waller (for the lead-sheet version consult Just Standards Real Book, Warner Bros. Publications, 2001, p. 9) shown in Figure 1.44, and “I Got Rhythm” by George and Ira Gershwin (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 191) illustrated in Figure 1.45, are also based on Phrase Model 4 as their background harmonic structure.

The motion to IV in m. 4 (the former), and m. 6 (of the latter), signifies a harmonic departure.
Figure 1.44

Ain't Misbehavin’ - mm.1-8

Phrase Model 4

Initial Projection
Harmonic Departure (IV)

![Music notation image]

Figure 1.45

I Got Rhythm - mm.1-8

Phrase Model 4

Initial Projection
Harmonic Departure (IV)

![Music notation image]
The harmonic departure in Figure 1.44 and Figure 1.45 occurs after the initial projection of the triad and emphasizes motion to IV. The harmonic departure on IV is prepared by prolonging the tonic via a I-vi-ii-V progression. Though the first two measures of “Ain’t Misbehavin’” represent a modified version of the I-vi-ii-V progression, and mm. 1-4 of “I Got Rhythm” can be embellished in a number of ways, the basic framework of the progression remains unchanged. The reappearance of the tonic in m. 3 of both tunes suggests tonic prolongation activated by the phrase identifier.

Phrase Model 5

The phrase structure of “You’d Be So Nice To Come Home To” is based on the ABAC design. Tunes sharing this formal mold can be analyzed in two ways: 1) each eight-measure phrase can be examined separately, and/or 2) a complete sixteen-measure period can be unified as a whole, (AB), and then examined as a single phrase model.

The harmonic design of tunes with a large-scale motion from vi to I presents a tonal problem: to what extent does the confirmation of the tonality depend on the harmonic setting of a phrase? Since in most cases, the final tonic is reached at the end of tunes, phrase identifiers function as initial harmonic ascents preparing the arrival of the tonic, and thus the role of the relative minor may be more than merely ornamental. In “You’d Be So Nice To Come Home To,” for instance, it is not until the final cadential closure at the end of the tune that the tonic is firmly confirmed. Such key distribution with the emphasis on the secondary key area may suggest, as it does in Common-Practice music, double-tonic complexes. Although cast in the ABAC form, “You’d Be So Nice To Come Home To” features an unorthodox phrase distribution with an interesting harmonic progression. Figure 1.46 suggests the phrase structure of mm. 1-16.

25 Due to its complicated structure, I have included a complete tune.
Measures 1-8 resemble an incomplete Phrase Model 5 and mm. 9-16 parallel Phrase Model 2. Phrase Model 5 is employed in an incomplete version due to the absence of a final cadential closure. Notice that the harmonic goal of mm. 1-8 is the tonicization of the subdominant in m. 8. Incidentally, this motion constitutes the harmonic departure of the phrase. Phrase Model 2 occurs within the confines of A minor and ends inconclusively on V.

Another method of analyzing these types of phrases is to combine them into a single period. Figure 1.47 shows a harmonic reduction of mm. 16-32 and proposes Phrase Model 5 as the section’s harmonic framework.
By analyzing the relationship between phrase models and their melodic structures, we can observe how the motion from vi to I comes about. The melody of “You’d Be So Nice To Come Home To” enables the tonicization of vi. The key of A minor is emphasized by: 1) the melodic descent $^1 \rightarrow ^7 \rightarrow ^6$, 2) the presence of the leading tone of vi, and 3) a downward skip from a^1 to e^1. The harmonic departure occurs on IV, which is a logical choice for the expansion of vi via downward arpeggiation, vi-IV-(ii). The arrival of the final tonic is prepared by a cycle-of-fifths progression beginning on iii.

By returning to the tonic in m. 3 and m. 7 of “I Hear A Rhapsody,” the main key is emphasized more forcefully. A harmonic reduction of the phrase in mm. 1-8 is given in Figure 1.48.
Background progressions of “You’d Be So Nice To Come Home To” and “I Hear A Rhapsody” share a similar design. In the former, the harmonic departure occurs in the predominant. In the latter, the motion to the tonic in m. 3 can be interpreted in two ways: 1) since the relative minor occupies a prominent role in the opening two measures (+ anacrusis), the motion to I suggests a harmonic departure in I; and 2) although the relative minor holds a prominent place at the tune’s beginning, the motion to I relegates its status to that of an initial ascent reaching up the tonic.

Phrase Model 6

Harmonic reductions of mm. 1-8 of “Don’t Blame Me” by Dorothy Fields and Jimmy McHugh (for the lead-sheet version consult Just Standards Real Book, Warner Bros. Publications, 2001, p. 100) and “A Foggy Day” by George and Ira Gershwin (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000 p. 139) given in Figures 1.49 and 1.50, respectively, demonstrate the applicability of Phrase Model 6.
Figure 1.49

Don't Blame Me - mm. 1-8

Phrase Model 6

![Musical notation for *Don't Blame Me*]

Figure 1.50

A Foggy Day - mm. 1-8

Phrase Model 6

![Musical notation for *A Foggy Day*]
The phrase identifier in Figure 1.49 and 1.50 is I - (ii7-V7)/ii; it influences the harmonic content of the phrase. Whereas mm. 7-8 of “Don’t Blame Me” feature a complete cadential closure, the same measures in “A Foggy Day” end inconclusively on the dominant. The harmonic direction in both phrases is goal-oriented and reveals a broad use of ii-V progressions in a number of contexts: triadic projections, melodic support, and harmonic arrivals. The harmonic departure happens in mm. 3-6 and retains a diatonic content. Measures 7-8 of both phrases reinstate the structural ii-V and prepare the arrival of the tonic or the dominant. The phrase structure of these two progressions is identical and exemplifies the use of Phrase Model 6.

Phrase Model 7

Phrase Model 7 constitutes a common jazz phrase type with a number of standard tunes sharing its harmonic layout. The phrase structures of “I Didn’t Know What Time It Was” by Lorenz Hart and Richard Rodgers (for the lead-sheet version consult *The Standards Real Book*, Sher Music CO., 2000 p.187) and “There Will Never Be Another You” by Harry Warren and Mack Gordon (for the lead-sheet version consult *The New Real Book*, Volume I, Sher Music CO., p. 355) in particular, correspond to this model.

Though the surface progressions of these tunes seem quite different, the forward projection of I-vii7-III7 in the latter, and the backward projection of vii7-III7 in the former, unifies the two harmonic schemes under a single phrase model. “I Didn’t Know What Time It Was” features the AABA formal design and “There Will Never Be Another You” the ABAC form.

Figure 1.51

I Didn't Know What Time Is It - mm.1-8

Phrase Model 7

\begin{itemize}
 \item **Initial Projection**
 \item **Harmonic Departure (vi)**
\end{itemize}

Cadential Closure
The omission of the tonic in “I Didn’t Know What Time It Was” shown in Figure 1.51, is one of the main tonal characteristics of the tune. The tonic arrives, for the first time, at the beginning of the B section. The melodic framework employs the $\hat{3}$-$\hat{2}$-$\hat{1}$ melodic pattern being reinterpreted in the context of the relative minor. The $\hat{1}$-7-6-5 melodic pattern in mm. 6-7 continues to be supported in E minor. A dramatic leap of a minor 7th up to c2 in m. 8 illustrated in Figure 1.52, activates the ii chord – the predominant of V in the tonic key.

Figure 1.52

I Didn't Know What Time Is It - mm.1-8

A voice-leading reduction of mm. 1-8 of “I Didn’t Know What Time It Was” given in Figure 1.52, contains a number of modifications of Phrase Model 7. First, the progression features a backward projection of the tonic triad. On the one hand, the melodic pattern confirms the tonality of the phrase; on the other, the reinterpretation of the notes as members of auxiliary chords activates the progression. Second, the phrase displays a large-scale tonal motion to ii. This inconclusive local closure on ii constitutes another variant of a cadence which usually rests on V at the close of the A section.

By combining the A and B sections of “There Will Never Be Another You” shown in Figure 1.53, a sixteen-measure period emerges as a strong harmonic and melodic whole.
The examination of this sixteen-measure period reveals a more complex version of Phrase Model 7. The harmonic rhythm of the phrase, with one harmonic change per measure (or one chord per two measures), is relatively slow. A motion to IV in m. 9 constitutes the phrase’s harmonic departure. The preparation for the structural dominant in m. 16 occurs in mm. 13-14 and features a secondary dominant seventh. Figure 1.54 shows a melodic reduction of mm. 1-5.

Figure 1.54

There Will Never Be Another You - mm.1-5
The initial melodic ascent to \(^3\) given in Figure 1.54, allows the forward projection of the tonic triad. The \(^3\)-\(^2\)-\(^1\) descent, just as in “I Didn’t Know What Time It Was,” is underlined by a local tonicization of the relative minor.

A more detailed reading of mm. 1-16 of “There Will Never be Another You” is offered in Figure 1.55 and parses the sixteen-measure period into two eight-measure phrases.

Figure 1.55

There Will Never Be Another You - mm.1-16

The A section (mm.1-8) features an incomplete Phrase Model 7, and the B section (mm. 9-16), Phrase Model 3 with a harmonic departure on II. Phrase Model 7 is utilized in its incomplete version due to the omission of a cadential closure at the end of the phrase.

Phrase Model 8

The A section of “There Is No Greater Love” by Isham Jones and Marty Symes (for the lead-sheet version consult *The Real Little Ultimate Jazz Fake Book*, Hal Leonard Publishing Corporation, 1992, p. 386) corresponds to Phrase Model 8 with a harmonic departure on II. Figure 1.56 shows a harmonic reduction of mm. 1-8.
Following the phrase identifier, a harmonic caesura on II in mm. 5-7 indicates the harmonic departure of the phrase. It is worth noting that the characteristic motion to IV in m. 2 in “There Is No Greater Love” and other standard tunes, has its origins in the structure of the blues. A typical blues progression is shown in Figure 1.57.

* A basic blues progression.
** A jazz elaboration of the basic blues progression.
Phrase Model 9

The harmonic design of the A section of “You Go To My Head” by J. Fred Coots and Haven Gillespie (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 545) is based on Phrase Model 9 with a harmonic departure on b^3II. Figure 1.58 suggests a voice-leading reduction of the A section.

![Figure 1.58](image)

Although Gm in m. 1 constitutes a diatonic expansion of the tonic, its presence solidifies the harmonic content of this particular phrase model. First, it is an integral harmonic change of the tune. Second, the approach to iv becomes less angular and offers a stepwise voice-leading preparation (an instance of structural “side-stepping”). Incidentally, iv in m. 2 is a member of a local ii-V progression anticipating the key of harmonic departure, b^3III. It is interesting to note that the melody traversing this complex array of chords is purely diatonic. It is the reinterpretation of diatonic notes as members of chromatic formations, either primary or secondary extensions, that enables the implementation of this bold harmonic departure.

Phrase Model 10

The overall design of Phrase Model 10 features a chromatic phrase identifier that temporarily sends the progression into the b^3VI territory. Although there is a relatively small
number of tunes based on this particular model, the A section of “What’s New” by Bob Haggart and Johnny Burke (for the lead-sheet version consult The New Real Book, Volume I, Sher Music CO., 1988, p. 402) is an excellent example of this phrase type.

A voice-leading reduction of the tune in given in Figure 1.59.

Figure 1.59

What's New - mm.1-8

Phrase Model 10

The harmonic definition of the phrase identifier is concomitant with the overall design of the melody. The use of e\(^b1\) in m. 3 influences the quality of the phrase which in mm. 4-6 prolongs the minor tonic before returning to I in m. 7.

Phrase Model 11

Since the chromatic ii-V is embedded in the structure of these tunes, its status has high structural significance. In “Out Of Nowhere,” the B♭m7-E♭7 progression supports the melodic f♮ and e♭1. Similarly in “Darn That Dream,” the melodic e♭1 becomes the 11th of B♭m7.

Figure 1.60

Out Of Nowhere - mm.1-16

Phrase Model 11

CUN - Chromatic Upper Neighbor

Figure 1.60 indicates a harmonic reduction of “Out Of Nowhere.” A relatively slow harmonic rhythm of the tune enables us to analyze mm. 1-16 as a whole. Measures 1-4 constitutes the phrase identifier. The harmonic departure occurs in m. 9; it features a motion to ii and occupies the span of four measures.
Figure 1.61 shows a harmonic reduction of the A section of “Darn That Dream.” Typically of ballads, this tune is characterized by a faster harmonic rhythm. The harmonic departure of “Darn That Dream” is more complex and engages two secondary key areas, vi and ii. The vi key area arrives in m. 3 and ii in m. 5. Both of these keys are prepared by their corresponding dominants whose local status is emphasized by the melodic content.

Phrase Model 12

Even though “How High The Moon” by Morgan Lewis and Nancy Hamilton (for the lead-sheet version consult *Just Standards Real Book*, Warner Bros. Publications, 2001, p. 144) is based on the ABAC form, its comparatively slow harmonic rhythm and the fact that the phrase identifier occupies mm. 1-8 of the tune, mm. 1-16 can be analyzed within the context of a single phrase.

Figure 1.62 indicates a harmonic reduction of mm. 1-16 and demonstrates the use of Phrase Model 12 as the section’s harmonic framework.
The harmonic departure appears in m. 9 and results from the harmonic motion initiated by the phrase identifier. The return to the tonic, first in the minor form (m. 11) then in the major (m. 13) rounds off the entire phrase.

Phrase Model 13

The harmonic design of the A section of “I’m Getting Sentimental Over You” by Ned Washington and George Bassman (for the lead-sheet version consult *The New Real Book*, Volume II, Sher Music CO., 1991, p. 162) shown in Figure 1.63, is based on Phrase Model 13.
Figure 1.63

I'm Getting Sentimental Over You - mm.1-8

Phrase Model 13

![Harmonic Analysis Diagram](image)

Figure 1.63 indicates a background harmonic setting of the A section. The arpeggiation of the Fma7 sonority along with a melodic arrest on ^7, prompts the use of #iv. The implementation of #iv, however, should be considered along with its corresponding dominant. The application of #ivø7-VII7 not only engages a daring departure from the diatonic harmony, but also provides a very effective way of decorating I. Instead of the diatonic dominant 7th, VII7 chromatically anticipates the arrival of I. Since the phrase identifier sets a predictable harmonic direction, namely the motion to III, the A section is based on Phrase Model 13.

Unlike "I’m Getting Sentimental Over You," “I Thought About You” by Jimmy Van Heusen and Johnny Mercer (for the lead-sheet version consult *Just Standards Real Book*, Warner Bros. Publications, 2001, p. 171) employs a more complex harmonic and melodic design. Its chordal framework, similarly to “There Will Never Be Another You,” can be examined in two different ways: 1) mm. 1-16 as a single phrase model, or 2) mm. 1-16 as a combination of multiple phrase models.

The harmonic structure and melodic properties of “I Thought About You” (especially its opening measures), offer the possibility for the implementation of two distinct models: Phrase Model 8 and Phrase Model 13. Phrase Model 8, with its characteristic motion, I-IV, corresponds to a diatonic version of the tune. Alternatively, the use of Phrase Model 13 matches a modified
version of the tune which has become standardized after Miles Davis’ 1961 seminal recording. Figure 1.64 shows mm. 1-16 and the use of Phrase Model 13 as its harmonic basis.

Figure 1.64

I Thought About You - mm.1-16

Phrase Model 13

The harmonic reduction in Figure 1.64 omits a number of significant details characteristic of the tune. With the exception of the harmonic departure in m. 9 on IV, the proposed reading does not account for some important harmonic events, such as the chromatic embellishment of I via the iv-bVII progression, or the use of another #IV progression at the beginning of m. 13. These details can be easily accounted for by employing a more elaborate analysis that utilizes the participation of incomplete phrase models. Figure 1.65 demonstrates the distribution of incomplete phrase models within mm. 1-16 of “I Thought About You.”

The section shown in Figure 1.65 recommends two types of phrase models: an incomplete Phrase Model 13 and an incomplete Phrase Model 3. Measures 1-8 are based on the incomplete Phrase Model 13 with a harmonic departure on vi in m. 7. The harmonic and contrapuntal design of mm. 7-16 is much more complex than the opening phrase. Measures 9-16 feature two truncated phrase types: the incomplete Phrase Model 3 with a harmonic departure on bVII (mm. 9-12) and the incomplete Phrase Model 13 without a harmonic departure (mm. 13-16). The incompleteness of these phrase models is unique in each case. In the first one, it is the off-tonic beginning and the absence of cadential closure that signifies its incomplete nature; in the second and third, their reduced lengths.

Phrase Model 14

Although Phrase Model 14 usually constitutes an internal phrase of a tune (most frequently the bridge of a “Rhythm Changes” tune), in George and Ira Gershwin’s “Nice Work If You Can Get It” (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 323), it appears, though in a modified form, at the beginning of the tune.

Figure 1.66 shows a harmonic reduction of the A section.
The tonal architecture of Phrase Model 14 is governed by the cycle of back-related dominant 7ths starting on III. The tonic in Figure 1.66 is alluded to in m. 3, and later confirmed in m. 8 by a conclusive cadential gesture. The first appearance of the tonic extends the cycle-of-fifths progression. Phrases based on Phrase Model 14 are characterized by a forward harmonic motion and a gradual attenuation of chromaticism with the approach of the governing tonic. Nowhere are these characteristics more revealing than in countless B sections of “Rhythm Changes” tunes. Figure 1.67 shows a voice-leading reduction of the bridge of “I Got Rhythm” by George and Ira Gershwin (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 191).

28 “Rhythm Changes” is a term referring to the harmonic design of a tune sharing the same changes as Gershwin’s “I Got Rhythm.”
Since each dominant 7th occupies two measures, it is possible to generate an alternate progression by inserting a ii chord prior to its corresponding dominant as shown in Figure 1.68. The harmonic transformation given in Figure 1.68 is extremely popular, especially among bebop players.
The resulting essential jazz counterpoint is characterized by a stepwise voice leading. Further transformations of Phrase Model 14 may include: 1) the use of tritone substitutions at the dominant and/or predominant levels, 2) an alternate use of diatonic and chromatic chords, and 3) various “side-stepping” techniques. Some of these transformations are provided in Figures 1.69.a and 1.69.b.

Figure 1.69.a

I Got Rhythm - mm.17-24 (Transformation 1)

![Figure 1.69.a](image)

Figure 1.69.b

I Got Rhythm - mm.17-24 (Transformation 2)

![Figure 1.69.b](image)
The main objective of Figures 1.69.a and 1.69.b is to demonstrate that all the phrase models discussed in this chapter can be harmonically transformed by reinterpreting the melodic patterns and the essential jazz counterpoint as members of substitute formations. The essential jazz counterpoint, being intimately linked to the melody, establishes a unique relationship with corresponding melodic patterns that makes these and other transformations possible.

Conclusion

To sum up, phrase models refer to the harmonic and contrapuntal structures of standard tunes. As has been demonstrated, there are a number of tunes that share comparable structural frameworks at the phrase level. Their individual traits, such as the design of the melody and various rhythmic characteristics set them apart. Further transformations of phrase models may include the application of various jazz reharmonization techniques, harmonic and contrapuntal (that will be discussed at length in Chapters 4 and 5). To some extent, analysis of complete standard tunes reveals that their formal, harmonic, and contrapuntal designs have similar properties to that of phrase models. The structure of complete standard tunes and their tonal characteristics are the subject of the next chapter.

[^29]: A more extensive list of standard tunes sharing similar phrase content is provided in Appendix A.
Chapter 2

Prototypes of Form

General Observations

The concept of prototypes can be useful in investigating both the harmonic and the formal organization of standard tunes. While phrase models indicate particular phrase types utilized within the individual sections of tunes, prototypes of form specify a typology of phrase models (in their most basic settings), a possible harmonic departure in the bridge (or other sections) to a new tonal area, and the formal design of the tune. Depending on the complexity of a tune, a prototype may include multiple phrase models and/or incomplete phrase models (as will be evident in some tunes). A simple tune may include a single phrase type; more complex tunes may include up to four distinct phrases. A prototype with two unique phrase models, however, is by and large the most prevalent. The key of the bridge is an important tonal feature that distinguishes one prototype from another. Among numerous tonal possibilities for the key of the bridge (ranging from prolongation of the tonic to modulation to distant tonal areas), the propensity to tonicize closely related keys governs tonal organization of standard tunes. Although the formal setting of tunes presents a wide array of designs, the so-called popular song form is among the most common. In addition to its analytical benefits, the study of jazz prototypes offers exciting pedagogical advantages. By classifying standard tunes into specific formal categories, jazz musicians can easily assimilate a number of tunes based on the same harmonic design.

The present study considers two formal types: the 32-bar AABA (+ possible phrase extensions) and the 32-bar ABAC form. Though each section of these designs is self-contained, the overall structure exhibits binary characteristics with a harmonic interruption occurring in m. 24 of the AABA form and m. 16 of the ABAC form. Therefore, two basic tonal motions characterize the two branches of the interruption: 1) I-V, and 2) I-I. The phrase structure of most AABA standards utilizes a single phrase model for the A sections and usually tonicizes a new key area in the B section. The key of the bridge is contingent upon melodic and harmonic contexts. In some tunes, A sections are different from one another and display modified settings of the original phrase model. In general, each section within the AABA form is eight-measures long, with a clearly defined harmonic motion and well-articulated cadences. A four-measure phrase extension, occurring at the end of a tune can expand the total length of the tune to thirty-six measures. A two-measure phrase extension is less common and usually occurs in ballads.

The ABAC form has a phrase distribution different from the AABA types and typically displays a more complicated melodic, harmonic, and rhythmic setting. This type of design is

30 “Can’t We Talk It Over” includes a single phrase model; “Stella By Starlight,” employs four phrase models.

31 A dominant at the end of the first tonal motion may be referred to as a divider (Teiler) or dividing dominant. See Heinrich Schenker, *Free Composition* (New York and London: Longman, 1979), p. 36.

32 For instance “All The Things You Are,” “Stella By Starlight,” or “I Love You.”
often regarded as a two-part form, with two sixteen-measure periods. To qualify as such, a
tune must exhibit a rather uncomplicated harmonic progression with an over-arching melody
connecting two eight-measure phrases. Since the B and C sections of the ABAC form often
exhibit a motion to different, yet related tonal areas (comparable to the key of the bridge in the
AABA form), the corresponding phrase models for each section may have different harmonic
properties. An inconclusive cadence in m. 16 may constitute a harmonic goal of the section’s
tonal motion. The last eight-measure (C section) phrase resolves tonal ambiguity and confirms
the tonic. There are, however, a number of exceptions to this design.

These two formal designs, AABA and ABAC, also known as choruses, have become
very popular among jazz musicians as vehicles for improvisation. The circularity of their
design stems from the distribution of phrase models whose comparatively uncomplicated
background harmonic structures offer a number of possibilities for surface transformations.

This chapter will examine four basic prototypes: monotonal and off-tonic for the AABA
form, and monotonal and off-tonic for the ABAC form. The foremost characteristic of the
monotonal design is the forward projection of the tonic triad. The tonic governs the beginning of
each of the three A sections. Conversely, the off-tonic prototype features a backward projection
of the tonic. It is important to note that in jazz syntax, unlike Common-Practice music, triads are
rare and most often supplanted with primary extensions. Thus, four-part chords are considered
as stable formations. Henry Martin uses the term “prolongation by arrival” while referring to
the off-tonic prototype and defines this harmonic technique by which a “tonicized N chord is
said to be harmonically prolonged through the duration of the phrase or section, whether it was
stated initially or not.” Martin analyzes “Jazz Me Blues,” “All The Things You Are,” and
“Laura” as prototypical examples of tunes reaching the tonic at the very end of the form. The
status of the governing tonic in these and other tunes is confirmed on local and global levels.
The global confirmation of the tonic occurs with the final ii-V-I cadence. Local allusions to the
tonic strengthen its overall position within the tune’s framework, while lessening the role of
subsidiary key areas.

The AABA Form – Monotonal Design

Figure 2.1 demonstrates the distribution of tonal events within an AABA form based on a
monotonal design. The popularity of this type of prototype is manifested by a large number of
standard tunes organized according to this framework.

33 “There Will Never Be Another You,” “All Of You,” or “I Thought About You,” for example.
34 The chorus is usually preceded by the verse. Since the verse is not part of the improvisation, it
will not be considered in this study.
35 In analysis of standard tunes it is important to accept four-part chords, with primary
extensions, as stable sonorities. By collapsing the structure of standards into triads (as traditional
Schenkerians would do), an important part of tunes’ syntax would be unaccounted for.
36 See Henry Martin, “Jazz Harmony: A Syntactic Background,” Annual Review of Jazz Studies 4
37 “Laura” presents the additional problem of ending in the “wrong key.”
Figure 2.1

The AABA Form - Monotonal Design

This type of formal structure usually features two types of phrase models: one for the A section, and another for the bridge (B section). The tonic is clearly stated at the outset of a tune, and the large-scale harmonic motion of the first A section finishes, albeit inconclusively, on V or ii. The second A usually ends in the tonic, but its importance is overshadowed by an immediate tonicization in the key of the bridge with a ii-V progression. In some tunes, however, the second A section exhibits a slightly different harmonic setting than the first A section. The arrival of the bridge corresponds with the introduction of a new phrase model and a possible tonicization of a new tonal area. In more complicated bridge sections, however, an additional harmonic departure (||) may elaborate their background structures. The end of the bridge, after venturing to new tonal areas, is marked by a harmonic-formal interruption and prepares the arrival of the initial phrase model. The last A section ends in the tonic following a possible phrase extension.

Case I: Motion to IV

By and large, standard tunes with a motion to the subdominant as the key of the bridge represent the largest category of tunes. The popularity of this type of design can be traced back historically to a number of musical sources. Along with blues influences, the overall tonal design of countless marches and ragtimes (from the turn of the twentieth century) with a motion to the subdominant might have influenced the choice of IV as the key of the bridge in standard tunes. The tonicization of IV offers a temporary harmonic relief from the tonic. In addition to

38 Since the cadential gesture ii-V constitutes a single tonal entity, a phrase usually rests on V (rarely on ii).
39 The harmonic departure illustrates a motion to a secondary key area.
40 Appendix B provides an extensive list of tunes sharing this design.
41 In the Classical Period, this same design was found frequently in the Minuet and Trio. The harmonic design of Joseph Riepel's “Monte” features: $V^6/5/IV-IV^6/5/V-V$. The harmonic motion to IV and later V is similar to the motion to IV in the bridge of a standard tune.
a different harmonic setting, the bridge often contains contrasting melodic material. “I’ve Never Been In Love Before” by Frank Loesser (for the lead-sheet version consult *The New Real Book*, Volume II, Sher Music CO., 1991, p. 172) and “Mean To Me” by Roy Turk and Fred E. Ahlert (for the lead-sheet version consult *The Real Little Ultimate Jazz Fake Book*, Hal Leonard Publishing Corporation, 1992, p. 244) are examples of the monotonal AABA prototype with a characteristic motion to the subdominant as the key of the bridge.

Both of these tunes are based on the AABA form. The background settings of the A sections employ Phrase Model 4 as their harmonic basis. The use of the \(^8 \cdot 7\cdot 6\cdot 5\) melodic pattern with Phrase Model 4 without a harmonic departure underlies the structure of “I’ve Never Been In Love Before” and is typical of the style.\(^{42}\) Alternatively, the A section of “Mean To Me” employs Phrase Model 4 with a characteristic harmonic departure to IV in m. 4. The motion to the bridge is precipitated by a ii-V of IV. The status of IV in both tunes, however, has different tonal underpinnings. Whereas in “I’ve Never Been In Love Before” IV still functions as the subdominant (in spite of the tonicization in m. 16); in “Mean To Me,” IV acquires the status of the temporary tonic. Therefore, the bridge of “I’ve Never Been In Love Before” is based on an incomplete Phrase Model 3 with a harmonic departure on vi-III, and the bridge of “Mean To Me” is based on an incomplete Phrase Model 1 with a harmonic departure on vi. A middleground voice-leading reduction of “I’ve Never Been In Love Before” is shown in Figure 2.2.a.

\(^{42}\) The use of an upper tetrachord is commonplace in popular music with consonant support that can be a major 7th chord, a 9th chord, etc. *Züge* involving the upper tetrachord are rare in traditional tonal music, as recognized (and even formalized) in Schenkerian theory.
Figure 2.2.a

Motion to IV in an AABA Form:
I've Never Been In Love Before
The melodic d\(^2\), at the beginning of the bridge in “I’ve Never Been In Love Before” is a passing note in the lower tetrachordal span, \(\text{^4} \text{^3} \text{^2} \text{^1} \text{^7}\). To avoid the interval of a major 7\(^{th}\) between the outer voices at the beginning of the bridge, a conceptual \(\text{^4}\) is invoked to assure the continuity of the structural \(\text{^8}\)-line descent. The motion to vi in m. 21 of “I’ve Never Been In Love Before” ends the presentation of the lower tetrachord and initiates the preparation of D major in m. 25. Notice that, in m. 23, the melodic a\(\text{'}\) (\(\text{^7}\)) receives consonant support. The D
major chord acquires three functional roles: a 3rd divider, a formal determinant, and a harmonic departure. Since D major divides the motion to the dominant and constitutes a significant departure from Bb major, this event further differentiates the overall harmonic quality of the tune. In spite of the tune’s rather weak motion to IV, “I’ve Never Been in Love Before” belongs to the category of standards emphasizing the subdominant as the key of the bridge.

Figure 2.2.b displays the structural octave line spanning mm. 1-24 with a termination on 7, and indicates the formal interruption in m. 24.

Figure 2.2.b

Middleground: I've Never Been In Love Before

Notice that 7 receives harmonic support from III and V. The latter, a dominant divider, interrupts the continuity of the tonal motion. Figure 2.2.c shows a third-related progression controlling the background of the tune.

43 There are other tunes such as “I Love You,” “If I Were A Bell,” or “I’m Old Fashioned,” that feature motion to III. In all of these tunes, III appears at different places.
A voice-leading reduction of “Mean To Me” shown in Figure 2.3.a, illustrates a number of melodic and harmonic dimensions of the tune.
Figure 2.3.a

Motion to IV in an AABA Form:

Mean to Me

Phrase Model 4

\[\begin{array}{cccccccc}
\text{m. 1} & ^3 & ^4 & ^5 & ^6 & ^3 & ^3 & ^1 \\
\text{m. 8} & & & & & & & \\
\end{array} \]

\[\begin{array}{cccccccc}
I^7 & vi^7 & ii^7 & V^7 & I^7 & (ii^7V^7) & IV^7 & vi^7 & \text{VII}^{b7} & I^7 & vi & I^7 & V^7 & I^7 & ii^7 & V^7 \\
\end{array} \]

Phrase Model 4

\[\begin{array}{cccccccc}
\text{m. 9} & ^3 & ^4 & ^5 & ^6 & ^3 & ^3 & ^1 \\
\text{m. 16} & & & & & & & \\
\end{array} \]

\[\begin{array}{cccccccc}
I^7 & vi^7 & ii^7 & V^7 & I^7 & (ii^7V^7) & IV^7 & vi^7 & \text{VII}^{b7} & I^7 & vi & I^7 & V^7 & I^7 & ii^7 & V^7 \\
\end{array} \]
The A section of “Mean To Me” features a gradual unfolding of a compound melody. The top voice of the compound melody ascends from \(^3\) to \(^6\) and the bottom voice offers a contrapuntal support, \(^6\) to \(^1\). The harmonic motion in the first measure, Fma\(^7\)-F\(^#o7\), provides a chromatic substitution for the diatonic I-vi. Phrase Model 4 with the harmonic departure to IV assimilates an additional idiomatic harmonic signature typical of standard tunes: the use of \(bVII^7\) as a preparation of I in m. 4. The bridge of “Mean To Me” stays in the subdominant for four measures and is based on an incomplete Phrase Model 1. Since the end of the bridge proceeds to the tonic, the participating phrase model undergoes essential modifications. A motion from I to vi (a temporary B\(^b\) and G minor in mm. 17 and 21), prepares the arrival of the governing tonic. G minor becomes a pivot which functions as vi to the key of the bridge and ii of the main key. The absence of a cadential closure in the bridge demonstrates the incompleteness of Phrase Model 1.
The background progression of the tune shown in Figures 2.3.b. and 2.3.c, indicates a $^3-^2-^1$ descent in the A sections and an incomplete tetrachordal span ($^4-^3-^2$), followed by the formal interruption.

Figure 2.3.b

Middleground: *Mean To Me*
A Large-Scale Key Distribution:

Mean To Me

Though the opening progressions in both tunes feature different chord sequences, their fundamental structure is based on Phrase Model 1. Comparison of harmonic settings of “I’ve Never Been In Love Before” and “Mean To Me” points out a number of similarities at the background level, such as the choice of phrase model for the A section, and the same key of the bridge. The apparent differences between the two result from individual traits of the melody. Above all, the harmonic settings of these tunes is reified by the behavior of the essential jazz counterpoint. The essential jazz counterpoint constitutes a structural framework which can be modified and transformed. Any harmonic changes to this framework pertain to the foreground level.

Case II: Motion to III (iii)

The harmonic progressions of “Polka Dots And Moonbeams” by Jimmy van Heusen and Johnny Burke (for the lead-sheet version consult The New Real Book, Volume I, Sher Music CO., 1988, p. 273) and “My One And Only Love” by Guy Wood and Robert Mellin (for the lead-sheet version consult The Real Little Ultimate Jazz Fake Book, Hal Leonard Publishing Corporation, 1992, p. 266) feature a monotonal design that tonicizes the mediant key in the bridge. On the one hand, the mediant key offers a more distant departure from the governing tonic; on the other, III functions as a third-divider and participates in a large-scale prolongation

\[44\] In Part II, I will analyze in detail two tunes “Stella By Starlight” and “It Never Entered My Mind” to demonstrate the possibility of harmonic expansion at the foreground level.
of the tonic via arpeggiation. These two tunes modulate to the major and minor mediant, respectively, hence this particular monotonous prototype accounts for both possibilities.

The harmonic design of the A section of “Polka Dots And Moonbeams,” especially the use of a large-scale third progression, I-vi, anticipates the arrival of the mediant key. The use of Phrase Model 4 with a harmonic departure on vi enables a smooth transition to III. Figure 2.4 shows the voice leading of the progression connecting the A and B sections.

Figure 2.4

Connecting Harmonies:
Polka Dots And Moonbeams

The harmonic motion to vi in m. 5 prolongs the tonic. This large-scale motion is a result of both, the initial I-vi-ii-V projection and the melodic construction. The continuation of the progression from vi to $\#iv$ ($\#iv$ becomes a pivot, ii7 of III) amplifies a minor 3rd sequence established by the introductory local progression and the large-scale third progression, I-vi. A voice-leading reduction of “Polka Dots And Moonbeams” is illustrated in Figure 2.5.
Figure 2.5

Motion to III in an AABA Form:
Polka Dots And Moonbeams

Phrase Model 4

[A]

```
^8  \^3  \^7  \^6  \^3  \^1  \^3  \^7  \^5  
m. 1
```

I vi ii\(^7\) V\(^7\) I vi ii\(^7\) (ii\(^7\) V\(^7\)) vi\(^7\) I iii ii\(^7\) V\(^7\) ii\(^7\) V\(^7\)

Phrase Model 4

[A]

```
^8  \^3  \^7  \^6  \^3  \^1  \^3  \^7  \^5  
m. 9
```

I vi ii\(^7\) V\(^7\) I vi ii\(^7\) (ii\(^7\) V\(^7\)) vi\(^7\) I iii ii\(^7\) V\(^7\) I V\(^7\)

A: ii\(^7\) V\(^7\)
Comparison of the A and B sections reveals the structural role of the \(^3\sim^7\) melodic pattern as a compositional device, and the use of Phrase Model 4 as a harmonic framework for both sections. The resultant tetrachordal span is supported by diatonic ii-V progressions in m. 2 and m. 26. In m. 4 and m. 14 its transposed version, beginning on \(^6\), serves as a modulatory link to vi. The B section uses an incomplete Phrase Model 4 without harmonic departure. A passing diminished chord, linking Ama\(^7\) with Bm\(^7\) constitutes a rootless F\(^\#7(b9)\) and can be substituted by a vi chord. Incidentally, vi is used two measures later in an analogous harmonic situation.

The harmonic framework of “My One And Only Love” exhibits similar properties to that of “Polka Dots And Moonbeams.”

The A section is based on the Phrase Model 4 in which passing motion in the bass and the use of chordal inversions decorate its harmonic surface. Not only does the progression from D\(^7/F^\#\) to G\(^7/F\) (m. 2) suggest an effective contrapuntal expansion of the diatonic ii-V, but it also functions as harbinger of the key of the bridge. The use of F\(^\#\) in the bass as the 3\(^{rd}\) of the secondary dominant anticipates its occurrence as the root of F\(^\#6\), a local ii\(^6\), at the close of the second A section.

The first four measures of the bridge show characteristics of an incomplete Phrase Model 1 in E minor. The confirmation of E minor is accomplished by the overall melodic design which emphasizes members of the temporary tonic, \(<b^1\sim g^1\sim b>\), and by a harmonic setting which utilizes a minor ii\(^6\)-V\(^7\) progression. The chromatic descent in the bass (mm. 21-22) prepares the arrival of the structural ii, which is tonicized by its dominant. A voice-leading reduction of the tune is displayed in Figure 2.6.a.
Figure 2.6.a

Motion to III in an AABA Form:

My One And Only Love
Phrase Model 4

A
\[\text{m. 1} \]

\[\text{I} \quad \text{vi} \quad (\text{ii V}) \quad \text{I} \quad \text{IV} \quad \text{V} \quad \text{iii} \quad \text{vi} \quad \text{ii} \quad \text{V} \quad \text{vi} \quad \text{II} \quad \text{ii} \quad \text{V} \]

Phrase Model 4

A
\[\text{m. 9} \]

\[\text{I} \quad \text{vi} \quad (\text{ii V}) \quad \text{I} \quad \text{IV} \quad \text{V} \quad \text{iii} \quad \text{vi} \quad \text{ii} \quad \text{V} \quad \text{vi} \quad \text{II} \quad \text{V} \quad \text{I} \]

Em: ii\(^7\) V\(^7\)
Figure 2.6.a illustrates a familiar unfolding of the $^8 - 7 - 6 - 5$ melodic pattern in the A section. 8 is prepared by a motion from an inner voice and balanced by a contrary motion in the bass. The preparation of the key of the bridge is identical with that of “Polka Dots And Moonbeams”; 1, ending the A section, becomes b6 of iii and resolves to 5 at the beginning of the bridge (compare with Figure 2.4). “My One And Only Love” provides another example of the interruption form, one in which the mediant key area functions as a third-divider. Figure 2.6.b summarizes a large-scale key organization of the tune.
The prominent role of the upper tetrachord, the preparation of the bridge, and the role of iii (III) as a third-divider in the interruption form establish an architectural pattern for the middleground of numerous standard tunes.

Case III: Motion to bVI

Standard tunes in major keys are far more numerous than tunes in minor. The latter, however, are governed by the same harmonic and contrapuntal rules concerning the distribution of phrase models and the key of the bridge as the former. The tunes “You And The Night And The Music” by Howard Dietz and Arthur Schwartz (for the lead-sheet version consult *The Standards Real Book*, Sher Music CO., 2000 p. 537) and “Angel Eyes” by Matt Dennis and Earl Brent (for the lead-sheet version consult *The Real Little Ultimate Jazz Fake Book*, Hal Leonard Publishing Corporation, 1992, p. 45) are in C minor and feature a monotonal framework with a motion to bVI in the bridge.

The A section of “You And The Night And The Music” is based on Phrase Model 1. Note that a phrase model in minor has the same structural properties as in its major counterpart. Therefore, depending on the context, phrase models can be interpreted in major and minor keys, without losing any of their structural components.

The overall melodic and harmonic components of “You And The Night And The Music” have strong blues characteristics. These are exemplified by the use of motivic fragments utilizing “blue notes,” and harmonic departure on iv. Though the opening chord of the bridge is A\(^{b7}\), it does not function as a new key area, but as a chromatic upper neighbor of V.\(^{45}\) A voice-leading reduction of the tune is shown in Figure 2.7.

\(^{45}\) Its function is similar to the role of an augmented sixth chord preparing the arrival of the dominant.
Figure 2.7

Motion to bVI in an AABA Form:
You And The Night And The Music

[Note: Diagram and musical notation showing phrase model 1 with numeral annotations and musical symbols for i7, ii7, V7, I7, iv7, V7, and I7.]
As has been mentioned, this tune makes an extensive use of motivic repetition. A double-neighbor-note idea, for instance, decorates 5 and 4 in the A section; additionally, it embellishes 3, 2, and 1 in the B section. The initial tonic projection features a ii°7-V7 progression that supports 5. The melodic pattern in the first two A sections (5-4-3) is
balanced by a longer descent in the bridge (\(^3-^2-^1-^\#^7-^1 \)). The last A section employs a
dramatic registral shift up to 3, followed by a \(^3-^2-^1 \) melodic pattern.

“Angel Eyes” is another minor tune based on the monotonal prototype with prominent
blues underpinnings. The A section elaborates Phrase Model 1. The harmonic departure on
\(b^6 \) in the A section prepares the arrival of \(b^6 \) as a temporary key area in the bridge. Figure
2.8.a illustrates a voice-leading reduction of “Angel Eyes.”

Figure 2.8.a

Motion to \(b^6 \) in an AABA Form:

Angel Eyes

Phrase Model 1

46 The blues-melodic formations are essentially pentatonic, with “passing” \(^4/\#^5 \); there are
derived from the following pitch segment: \(<C, E^6, F, (F^\#/G^b), G, B^b> \), known as the “Blues
scale.”
The design of the A section in Figure 2.8.a features an arpeggiation of the C minor harmony ($3^\flat-5^\flat-3^\flat-5$). The B section is based on an incomplete Phrase Model 2 consisting of the phrase identifier only, situated in two secondary key areas, A^b and G, respectively. The key of G major, however, functions as a pivot area preparing the harmonic interruption in m. 24. A chromatic $C^\# m^7-F^#7$ (m. 23) offers a harmonic support for $f^\#1$ and anticipates the arrival of the $ii^{o7}-V^7$ cadential progression. The large-scale key distribution shown in Figure 2.8.b, indicates the exploration of third-related progressions.
In addition to the monotonal framework, the off-tonic design constitutes an important prototype for standard tunes. The off-tonic prototype includes a number of tunes with a large-scale motion toward tonic which Martin calls “prolongation by arrival.” Figure 2.9 demonstrates the distribution of tonal events within the AABA form based on the off-tonic prototype.

The omission of the governing tonic at the outset of a tune, at the expense of other harmonic possibilities including ii-V, IV, and/or vi, is the main characteristic of this prototype.

The phrase identifier, however, participates in a backward projection of the tonic, whose status is confirmed either at the end of the tune, or is alluded to within individual phrases.

Case I: Motion to IV

The bridge of “You Are Too Beautiful” uses Phrase Model 3 with a harmonic departure on vi in m. 22. The primacy of IV at the beginning of the bridge does not imply tonicization (as it did in other tunes), but another method of decorating the tonic, hence the use of Phrase Model 3. The absence of b^5, along with the prominent role of 6, are factors determining the prolongation of the tonic in the bridge. Melodic motion from 6 to 5 in m. 18 exemplifies a typical upper-neighbor resolution over the tonic which regains its role as the main key. A voice-leading reduction of the tune is provided in Figure 2.10.
Figure 2.10

Motion to IV in an AABA Form:

You Are Too Beautiful

Phrase Model 2

\[
\text{Phrase Model 2}
\]

\[
\text{Phrase Model 2}
\]
The tonic triad at the outset of the tune is prepared by an extended \(ii^7-V^7-iii^7-VI^7-ii^7-V^7 \) progression corresponding to Phrase Model 2. A harmonic departure offers a motion to vi and is preceded by a chromatic \(iv^7-bVII \) progression. Scale degree 6, opening the tune, functions as an upper neighbor to \(^5 \). The role of the neighbor motion becomes very prominent in the B section.
as each of the chord members of C6 is embellished by their upper neighbors, creating a stepwise progression that controls the middleground level.

“Everything Happens To Me” is a 32-bar ballad with a characteristic off-tonic beginning using Phrase Model 2 and a harmonically challenging bridge which incorporates Phrase Model 2 but in an incomplete form. The A section features a backward projection of the tonic triad, which is reached by the end of m. 8. The melodic ^3 becomes the 9th of C minor, thus launching the ii7-V7 progression. The reduction of the melodic line in mm. 1-3, as shown in Figure 2.11, demonstrates the significance of the ^3-2-1 melodic pattern.

Figure 2.11

The bridge section of “Everything Happens To Me” stands out for its relatively complex construction. Measure 17 tonicizes IV, and continues the idea of backward prolongation that was emphasized at the beginning of the two A sections. The melodic b♭ (♮1) is reinterpreted as the 11th of F minor, and later as the 5th of E♭ma7. A harmonic caesura on ^7 in m. 22 corresponds to D major, the mediant key. The harmonic motion from E♭ major to D major necessitates stepwise preparation which influences the behavior of both contrapuntal and melodic entities within the progression. A harmonic “side-stepping” from E♭ma7 to Em7 fulfills stepwise conditions and triggers contrary motion between the bass and soprano.

Motion from ^7 to ^2 in mm. 22-24 requires a certain amount of energy to overcome the gravitational pull established by III. Motion to G minor, underlined with an incessant repetition of ^1, functions as a pivot enabling the transition back to B♭. Note that in addition to tonicizing IV, the bridge also contains a harmonic departure on III. The background harmonic structure of the B section of “Everything Happens To Me” displays the same qualities as that of “Angel Eyes.” In both tunes, the secondary key areas (E♭ and D in the former, and A♭ and G in the latter) along with incomplete phrase models govern the structure of the bridge.

The ^3-2-1 melodic pattern, which is often associated with cadential closure in the tonic, plays an important structural role in the melody and catalyzes two harmonic progressions beginning on ii and ^iv, with the progression on ^iv being an effective chromatic substitute for the diatonic ii-V. The first two A sections include a diatonic realization of the descent via a ii-V. The last A, however, often utilize an effective harmonization that transforms the original diatonic
progression into an idiomatic #iv chromatic descent. One of the conditions for the implementation of the #iv chromatic descent is a specific organization of a melody that emphasizes ^3, ^1, and/or ^7 as structural notes. These notes, placed at the beginnings of the melody, can be interpreted as members of the #iv descending progression. Figure 2.12 demonstrates the harmonic manipulation of the 3-2-1 melodic pattern using the #iv progression.

Figure 2.12

^3-^2-^1 - Harmonic Manipulation

A voice-leading reduction of the tune is shown in Figure 2.13.a.

48 The melodic properties of tunes such as “Over The Rainbow,” “I Thought About You,” “I Should Care,” among others, show some possibilities for the implementation of this progression.
Figure 2.13.a

Motion to IV in an AABA Form:

Everything Happens To Me

Phrase Model 2

![Sheet Music Image]

Phrase Model 2

![Sheet Music Image]
“Everything Happens To Me” is an example of a tune with a distinct organization of large-scale key areas that features the use of III as a third-divider. While the motion to IV in the bridge is an important tonal feature at the middleground level, its role at the background level is
reduced to an upper neighbor of III resembling a Neapolitan preparation. This scenario is demonstrated in Figure 2.13.b.

Figure 2.13.b

A Large-Scale Key Distribution: Everything Happens To Me

![Figure 2.13.b](image)

Case II: vi - I motion

Among numerous standard tunes featuring an off-tonic design, those with a large-scale motion from vi to I constitute an impressive category. The deceptive nature of these tunes is amplified by a strong emphasis on a minor key area. The relative minor may control a large portion of a phrase before preceding to the tonic. Consequently, these tunes are often mistaken for tunes in a minor key. The idea of backward projection, or “prolongation by arrival,” emphasized by the use of Phrase Model 5 could not be more evident than in this type of harmonic organization. Tunes such as “Cry Me A River” by Arthur Hamilton (for the lead-sheet version consult _Just Standards Real Book_, Warner Bros. Publications, 2001, p. 86) and “I Hear a Rhapsody” by George Fragos, Jack Baker, and Dick Gasparre (for the lead-sheet version consult _The New Real Book_, Volume III, Sher Music CO., 1995, p. 156) exemplify this prototype, and, in addition, share the same key of the bridge.

Although the motion to G minor in the bridge, and later in m. 23 to G major, can be understood within the confines of C minor (v), the final cadence (along with the \(^3\)-\(^2\)-\(^1\) melodic pattern) confirms the key of Eb. The melodic gesture in mm. 1-2 explores the dichotomy between Cm and Eb; its fleeting characteristics could be interpreted in either key. The melodic caesura on d\(^1\) has an unstable quality and functions as the \(^9\) of C minor. A voice-leading reduction of “Cry Me A River” is shown in Figure 2.14.a.
Motion to IV in an AABA Form:
Cry Me A River
Phrase Model 5

Figure 2.14.a
The B section projects the G minor tonic using an incomplete Phrase Model 4 with E\(^{b7}\) and A\(^{b7}\) functioning as tritone substitutions of the corresponding diatonic formations (A\(^{7}\) and D\(^{7}\), respectively). Measures 17-22 eventually lead to a half cadence on G\(^{7}\) which suggests the interruption on V (in the context of C minor). A large-scale organization of the tune shown in
Figure 2.14.b features the arpeggiation of the C minor triad. G, occurring in m. 24, functions as a third-divider of the interrupted form.

Figure 2.14.b

A Large-Scale Key Distribution:
Cry Me A River

The tonic triad in “I Hear A Rhapsody” unfolds on two independent planes. Locally, the tonic appears in m. 3 following an initial ascent (backward projection). Globally, the chord tones of the tonic triad constitute important key areas of the tune. The A section employs the prolongation of I; the B section completes the arpeggiation of the tonic harmony by exploring third-related harmonies (G minor and B♭ major, respectively). Figure 2.15 illustrates a voice-leading reduction of the tune.
Figure 2.15

Motion to III in an AABA Form:
I Hear A Rhapsody

Phrase Model 5

\[\text{A} \quad \text{m. 1} \]

\[
\begin{array}{ccccccc}
^1 & ^7 & ^5 & ^1 & \text{m. 8} \\
V^7 & vi^6 & ii^7 & V^7 & I^{7-6} & ii^7 & iv^6 & V^7 & I & vii^6 & V^7 \\
\end{array}
\]

Phrase Model 5

\[\text{A} \quad \text{m. 9} \]

\[
\begin{array}{ccccccc}
^1 & ^7 & ^5 & ^1 & \text{m. 16} \\
v^6 & ii^7 & V^7 & I^{7-6} & ii^7 & iv^6 & V^7 & I \\
\end{array}
\]

Gm: (ii^6) V^7
Note that the preparation for G minor in the bridge follows the same harmonic pattern as in “Polka Dots And Moonbeams” and “My One And Only Love.” Scale degree 1 of the tonic becomes the \(^b5\) of the \(^\#iv^\text{ø7}\) harmony. The neighbor-note idea is an important melodic feature of the tune. While in the A section it is reduced to local ornamentation of the chord tones (mm. 1, 5, and 7), in the bridge it occupies a more prominent role as it vacillates between \(^75\) and \(^7b6\) in
mm. 17-20. “I Hear A Rhapsody” is an example of the interruption form with the third-related progression as its structural framework.

Case III: Motion to $bVII$ (VII)

Tunes with a motion to $bVII$ (VII) in the bridge are not as numerous as other types, yet their overall harmonic design is worthy of analytical examination. “What Is This Thing Called Love” by Cole Porter (for the lead-sheet version consult Just Standards Real Book, Warner Bros. Publications, 2001, p. 366) and “All The Things You Are” by Oscar Hammerstein II and Jerome Kern (for the lead-sheet version consult Just Standards Real Book, Warner Bros. Publications, 2001, p. 18) belong to this category and are among the most frequently performed standard tunes.

Figure 2.16 shows a voice-leading reduction and the phrase distribution of “What Is This Thing Called Love.”
Motion to bVII in an AABA Form:
What Is This Thing Called Love

Phrase Model 3

Figure 2.16
The first two A sections are based on a modified Phrase Model 3. Note that iv is tonicized by a local ii-V progression. In the last A section, ii in m. 29 is replaced with bII which functions as a tritone substitute for the diatonic V. The B section features the use of an incomplete Phrase Model 2 in mm. 15-18 that offers a four-measure venture into the bVI key.
area. The b^7-b^6 progression in mm. 18-19 prepares the arrival of the structural dominant making the formal interruption in m. 24.

“All The Things You Are” is based on the AABA form with a four-measure phrase extension at the end of the tune.

Martin, in his analysis of “All The Things You Are,” points out that the tune’s design is marked by a “certain tonal ambiguity” and that “[h]armonic prolongation by arrival” is a trademark of its large-scale tonal organization. A voice-leading reduction of the tune shown in Figure 1.17 demonstrates the use of various phrase models.

49 See Martin, “Jazz Harmony: A Syntactic Background,” p. 15.
Motion to VII in an AABA Form:
All The Things You Are

Phrase Model 3

Figure 2.17
The first A is based on Phrase Model 3 with a complex harmonic departure resulting from the presence of the circle-of-fifths motion. The second A is a transposed version of the
opening phrase down a perfect fourth. Its harmonic goal, G, anticipates the key of the bridge. The bridge utilizes an incomplete Phrase Model 2 in G (VII) with a harmonic departure on VI, E. Notice that the types of phrase models correspond to the localized key areas. For instance, the characteristics of Phrase Model 3 fit the content of both A sections: the first A section traverses a local C major key area and the second A moves through a local G major. Globally, the structural framework of “All The Things You Are” represents a large-scale motion from vi to I. Even though the key of A♭ is briefly alluded to in m. 4, 13, and 28 before it is confirmed by a final cadence, the melodic design of the tune emphasizes a strong presence of a♭. Not only a♭ constitutes the opening note of the tune, but it also governs mm. 23-25, overreaching the formal interruption.

It may be interesting to speculate that since motion to bVII (VII) requires a more complex harmonic preparation, the harmonic design of the A sections is more exploratory than in other categories of standard tunes. Although only a conjecture, it seems to be well supported in “What Is This Thing Called Love” and “All The Things You Are.”

The examination of standard tunes in the AABA form reveals that the bridge is usually in one of the following keys: subdominant, mediant, submediant, lowered submediant, lowered supertonic, or lowered mediant. In tunes with more complicated harmonic settings, a harmonic departure may further partition the framework of the bridge. This characteristic, along with the type of a phrase model helps to differentiate among various categories of standard tunes.

The ABAC Form – Monotonal Design

The ABAC form consists of a different phrase distribution and is often examined as a large AB form with two sixteen-measure periods. The return of the opening A at the beginning of the second half, partitions the form into two large sections. The internal formal division of the tune results from melodic, harmonic, and rhythmic tensions which are brought to repose in m. 16. Figure 2.18 shows an outline of the monotonal prototype.

50 Tunes featuring a direct motion to IV include: “I’ve Never Been In Love Before,” “Mean To Me,” and “Star Eyes”; indirect motion to IV: “Satin Doll,” and “Everything Happens To Me”; motion to bVI: “Easy Living,” and “You And The Night And The Music”; motion to bII: “Body And Soul,” and “Just One Of Those Things;” motion to bIII: “It’s You Or No One,” and “Night And Day”; motion to III: “My One And Only Love,” “I’m Old Fashioned.” A more extensive list appears in Appendix B.
Within this formal setting, there are two possible interpretations pertaining to the distribution of phrase models. First, in standard tunes with a faster harmonic rhythm and thus more complex harmonic progressions, two distinct phrase models for the A and B sections can be employed. Second, in tunes with a slower harmonic rhythm and with an uninterrupted melody spanning mm. 1-16 or 17-32, only a single phrase model suffices in explaining the harmonic properties of the tune. The ABAC design, similarly to the AABA form, is an example of the binary interrupted form. The technique of interruption, which occurs in m. 16, divides a tune into two tonal motions I-V and I-I.

Case I: Motion to I in the B section

The structure of tunes “You Are My Everything” by Harry Warren, Mort Dixon, and Joe Young (for the lead-sheet version consult *The New Real Book*, Volume II, Sher Music CO., 1991, p. 447) and “The Touch Of Your Lips” by Ray Noble (for the lead-sheet version consult *The Real Little Ultimate Jazz Fake Book*, Hal Leonard Publishing Corporation, 1992, p. 400) is based on a monotonal prototype in the ABAC form with the B section prolonging the main tonic. Figure 2.19 shows a harmonic reduction of “You Are My Everything” and indicates the use of specific phrase models within its tonal framework.
Figure 2.19

Motion to I in an ABAC Form:

You Are My Everything

Phrase Model 13

Phrase Model 4
The phrase structure of the tune can be easily classified; Phrase Model 13 corresponds to mm. 1-8, Phrase Model 4 matches mm. 9-16, an incomplete Phrase Model 13 governs mm. 17-24, and finally, Phrase Model 5 controls mm. 25-32. Even though “You Are My Everything” belongs to the category of tunes prolonging the tonic in the B section, the use of vi in the C section suggests a viable substitution for the tonic. The use of Phrase Model 13 in the A section is possible through the reinterpretation of the melodic b1 in mm. 3 as the 11th of F#m7, ii of VII.
The harmonic continuation of mm. 3-8 proceeds according to the rules of tonal motion, completing the circle-of-fifths progression. Measures 9-16 employ Phrase Model 4 with a harmonic departure on II. Following the harmonic interruption in m. 16, the second A differs from the first A in its melodic and harmonic content. The incomplete nature of Phrase Model 13 is revealed by the use of E^7 in m. 23 as a harmonic support for the melodic b^1. This harmonic event activates vi at the beginning of the C section. The conclusion of the tune employs a new melodic and harmonic content which loosely resembles the content of the B section.

The harmonic structure of “The Touch Of Your Lips” shares a number of similarities with that of “You Are My Everything” and exhibits a clear allocation of phrase models and prolongation of I in the B section.

Figure 2.20 shows a voice-leading reduction of the tune and the use of corresponding phrase models.
Figure 2.20

Motion to I in an ABAC Form:
The Touch Of Your Lips

Incomplete Phrase Model 4

Phrase Model 2
Measure 1-8 feature an incomplete Phrase Model 4 without a harmonic departure. Its incomplete form is manifested by a motion to a secondary dominant, A\(^7\) in m. 8. The B section of the tune employs Phrase Model 2 with a harmonic departure on III. The reaffirmation of A\(^7\) in m. 16 as a 3\(^{rd}\) of V suggests the interrupted form 3-2-1-7||3-2-1. Following the interruption, the second A is based on the same melodic and harmonic content that the first A. The C section uses Phrase Model 2 with a harmonic departure on II. Note that the tonic in Phrase Model 2 is reached by arrival.
Case II: Motion to IV in the B Section

A voice-leading reduction of the tune is given in Figure 2.21.
Motion to IV in an ABAC Form:
My Romance

A

Incomplete Phrase Model 8

Incomplete Phrase Model 5

B

Phrase Model 3
The large-scale design in the A section of “My Romance” features tonal motion from I to vi and is based on an incomplete Phrase Model 8 (mm. 1-4 and 17-20) and an incomplete Phrase Model 5 (mm. 5-8 and 21-24). Since mm. 5 and 21 begin on vi, the incomplete Phrase Model 5 can be employed to indicate the harmonic design of mm. 5-8 and 21-24. Note that these two four-measure segments embody characteristics of two distinct phrase models, hence the use of two truncated phrase models. The B section begins on IV, and mm. 13-16 prepare the arrival of the tonic via an extended fifth progression beginning on ♭iv. The overall harmonic fabric of mm.
1-16 explores third-related harmonies, I-vi-IV, with the interruption on V in m. 16. Motions between the primary harmonies in mm. 1-16 are composed out using standard techniques of prolongation. A harmonically embattled motion from IV to V weaves in a chromatic sequence of the descending ii-V progressions beginning on $\#iv$ which can be classified as an incomplete Phrase Model 13.

The C section commences on IV and, along with different melodic content, contains a large-scale motion from IV through ii and vi, en route to I. The A sections have similar melodic and harmonic properties, with the exception of the final cadences. The B and C sections utilize Phrase Model 3. The B section features a more complicated setting of the model as a harmonic departure following IV begins a descending fifths progression on $\#iv$ before reaching an inconclusive cadential closure in m. 15. Alternatively, the C section uses a less complicated version of the Phrase Model 3, as a harmonic departure on vi intervenes in the motion from IV toward a conclusive cadential closure in m. 30.

The harmonic structure of “Like Someone In Love” shares a number of tonal features with that of “My Romance.” The A section expands the tonic through vi in m. 2 and ii-V in mm. 5-6, and roughly corresponds to Phrase Model 7. The main characteristic of Phrase Model 7 is the tonicization of vi via ii-V or an applied dominant 7th. Since the opening progression tonicizes vi, and jazz musicians often substitute E7 with Bm$^{(o)}$-E7 (or its logical variants), it is conceivable to apply Phrase Model 7 as a viable harmonic scheme governing the progression in mm. 1-8. The harmonic content of the B section in “Like Someone In Love” is more complex than the harmonies of “My Romance;” it is based on Phrase Model 3 with a harmonic departure on VI (A major). Similarly to “My Romance,” sections B and C of “Like Someone In Love” feature different harmonic and melodic settings. Whereas at the end of B section only one chord per measure (starting on vi) permeates the harmonic structure, the C section with its more elaborate progression, prepares the arrival of the tonic. Figure 2.22 shows the distribution of structural harmonies along with a voice-leading reduction of the tune.
Figure 2.22

Motion to IV in an ABAC Form:
Like Someone In Love

Phrase Model 7

Phrase Model 3

I vii\(^7\) III\(^7\) vi\(^7\) iii\(^7\) VI\(^7\) ii\(^7\) V\(^7\) I\(^7\) (ii\(^7\) V\(^7\))

IV\(^6\) (ii\(^7\) V\(^7\)) VI\(^7\) vi II ii\(^7\) V\(^7\)
The large-scale prolongation of the tonic includes a passing motion (with a prominent F#) in the bass, thus providing contrapuntal support for the diatonic melody. The use of third-related harmonies (seemingly an important structural characteristic of standard tunes) governs the large-scale organization of the B and C sections. The harmonic motion from IV to VI offers a
considerable departure from the confines of diatonic harmony. Measure 16 marks the interruption and the melodic $d^\#1$ functions as the $b13$ of the dividing dominant, G^7.

Case III: Motion to VI in the B section

A harmonic reduction of “Time After Time” shown in Figure 2.23 indicates the use of an incomplete Phrase Model 4 in mm. 1-8 and mm. 17-24, and Phrase Model 5 with a harmonic departure on iii in mm. 9-16 and mm. 24-32.
Figure 2.23

Motion to VI in an ABAC Form:

Time After Time

Incomplete Phrase Model 4

Phrase Model 5
The motion to E\(^7\) at the close of the A section triggers the key of A minor in m. 9. Once the key of harmonic departure is reached in m. 11, the circle-of-fifths motion completes the B section.
Figure 2.24 shows a harmonic reduction of “I’ll Be Seeing You” in which motion to VI in the B section is counterbalanced by its variant in the C section.

Figure 2.24

Motion to VI in an ABAC Form:

I'll Be Seeing You

Phrase Model 1

![Phrase Model 1 diagram]

Phrase Model 5

![Phrase Model 5 diagram]
Notice that Phrase Model 5 in the B section appears without a harmonic departure proceeding to V in m. 16 via the circle-of-fifths motion. The content of the C section, however, is different from that of the B section. The reappearance of vi in m. 27 is preceded by its tonicization in mm. 25-26.
The ABAC Form – Off-Tonic Design

The off-tonic prototype based on the ABAC form constitutes a less common design, yet its peculiar characteristics are worthy of a brief analytical inquiry. The distribution of phrase models within this prototype is shown in Figure 2.25.

Figure 2.25
The ABAC Form – Off-Tonic Design

Phrase Model(1) Phrase Model(2) Phrase Model(1) Phrase Model(3)
(x)––––(ii-V)/X|X––––X-(ii-V)/x|x––––(ii-V)/X|x––––ii-V-I|

A B A C
Phrase Model (1) Phrase Model (2)
A B

Case I: Motion to I in the B section

The harmonic structures of “All Of You” by Cole Porter (for the lead-sheet version consult The Standards Real Book, Sher Music CO., 2000, p. 17) and “I’ll Never Smile Again” by Ruth Lowe (for the lead-sheet version consult The Real Little Ultimate Jazz Fake Book, Hal Leonard Publishing Corporation, 1992, p. 168) pertain to the off-tonic prototype. In addition to the use of Phrase Model 2 for the A sections, the prolongation of I in the B sections is the characteristic trademark of the model.

Figure 2.26 suggests the distribution of phrase models in “All Of You.”

Figure 2.26
Motion to I in an ABAC Form:

All Of You

Phrase Model 2

\[\begin{array}{c}
\text{m. 1} \\
A \\
\text{m. 8}
\end{array} \]

\[\begin{array}{cccc}
& ^{4} & ^{3} & \\
\text{ii}^{67} & V^{7} & I^{7} & V^{7}
\end{array} \]

Phrase Model 1

\[\begin{array}{c}
\text{m. 9} \\
B \\
\text{m. 16}
\end{array} \]

\[\begin{array}{cccc}
& ^{6} & ^{3} & ^{7} \\
I^{6} & ii^{7} & V^{7} & I^{7} & VI^{7} & ii^{7} & V^{7}
\end{array} \]
The A section of the tune is based on Phrase Model 2. The B section employs Phrase Model 1 which ends inconclusively on V. The motion to V in m. 16 marks the formal interruption. The second A section differs from the first A in the use of an incomplete Phrase Model 2 concluding on VI\(^7\). Finally, mm. 25-32 incorporate Phrase Model 3 with a harmonic departure on ii. Notice that the harmonic departure features a "side-stepping" progression from A\(^b\) to Am\(^b9\)-D\(^7\) which triggers the circle-of-fifths motion.
“I’ll Never Smile Again” shares a number of similarities with the framework of “All Of You.”

Figure 2.27 demonstrates the distribution of phrase models and a voice-leading reduction of “I’ll Never Smile Again.”

Figure 2.27

Motion to I in an ABAC Form:
I'll Never Smile Again
The A sections of “I’ll Never Smile Again” are based on Phrase Model 2 without a harmonic departure. The B section employs Phrase Model 2 with a harmonic departure on III. The C section, just as in “All Of You,” incorporates Phrase Model 3 with a characteristic motion to IV.
Special Case

“You’d Be So Nice To Come Home To” by Cole Porter (for the lead-sheet version consult *The Standards Real Book*, Sher Music CO., 2000 p. 555) is an example of a tune with an unusual harmonic design.

The melodic and harmonic content of the B and C sections are considerably different from one another. A harmonic framework of the tune includes Phrase Model 5 with a complex harmonic departure identified by motion from vi to IV in the first A section; \((ii^7-V^7)-\text{vi}-V^7/\text{vi}\) in the B section; \(\text{vi} \rightarrow \text{IV}\) in the second A section; and \(\text{iii-vi-ii-V-I}\) in the C section. The lack of reference to C major in mm. 1-16, as well as the prevailing role of A minor in mm. 17-29, seem to weaken the final approach to C major. It can be argued that this type of design presents tonal problems and could be analyzed in both keys, A minor and C major. An analytical reading in A minor, however, de-emphasizes the role of the final cadence in C major and considers it as a secondary motion to the relative major. Figure 2.28 represents a voice-leading reduction of the tune.
Figure 2.28

Special Case:
You'd Be So Nice To Come Home To

The analytical reading of Figure 2.28 reveals interesting relationships between melodic and harmonic dimensions of the tune. Whereas the harmonic design (for the most part) supports
the relative minor, the melodic reduction emphasizes the role of chord tones and the primary extension (the 6th) of C major. This brief analytical commentary on “You’d Be So Nice To Come Home To” demonstrates that the repertory of standard tunes cannot be confined within the straightjackets of prototypical formal categories discussed in this chapter. Even though the present study has examined the standard repertory only from the two formal perspectives, the AABA and ABAC, their multifarious melodic, contrapuntal, and harmonic realizations can provide exciting and often challenging material for theoretical examination.

Conclusion

The aforementioned prototypes establish tonal premises by which the majority of standard tunes featuring the AABA and ABAC forms can be organized. The classification of tunes in the AABA form is relatively straightforward and does not present such challenges as in their ABAC counterparts. In the former, usually two phrase models control the phrase structure of tunes. In the latter, depending on the complexity of a tune, sections B and C may feature different harmonic and melodic settings. Often, however, the relationship between these sections can be established at the background level. Once we comprehend the idiosyncratic logic underlying the tonal construction of standards at the background level of musical structure, we can classify them into specific formal and tonal categories, and begin to manipulate their structural frameworks through various harmonic, contrapuntal, and formal transformations.

51 A logical continuation of the present study would be to codify other formal settings of standard tunes.
52 Appendix B groups standard tunes according to their prototypes, phrase models, the key of the bridge, and a harmonic departure. Though standards from the same category may differ in surface characteristics, their basic harmonic outline remains the same.
Chapter 3

The Hexamodal System

Introduction

Jazz harmony encompasses a rich panorama of musical traditions ranging from various popular genres to Western classical music. The confluence of these traditions produces an idiosyncratic whole whose syntax is governed by idiomatic grammar rules. In this chapter, I will lay the groundwork for the taxonomy of jazz syntax with the emphasis on its chordal formations. Toward that end, I posit the Hexamodal System, which is comprised of six-note segments. These “hexamodes” are hierarchically organized within four nexus collections according to their function and the presence of stable and unstable tones. It is important to stress that hexamodes are not melodic scales, but six-note source-sets that furnish materials for chord voicings. The verticalization of hexamodes and the application of various “dropping techniques” generate a number of jazz voicings with specific harmonic functions. “Dropping techniques” transfer one or more pitches down an octave and transform a close-position voicing into an open-sounding sonority. The Hexamodal System then is the union of jazz “voicings” and chord-scale relationships inferred from various hexamodal scales. Since the functional power of these chords derives from their correspondence to a particular scale or a specific tonal environment, four unique nexus collections major, minor, intermediary, and dominant will determine various chord-scale relationships.

We need some preliminary definitions to understand the Hexamodal System better.

Definition 3.1

The hexamode is a six-note subset of one of the four nexus collections.

Definition 3.2

The nexus collection is the sum of pitch content of hexamodes sharing the same harmonic function.\(^{53}\)

The map of the system is given in Chart 3.1.

\(^{53}\) Since the Hexamodal System operates within the chromatic environment, each nexus collection plus its complement forms the aggregate. The complement constitutes the notes that are not members of the corresponding nexus collection.
For the time being, hexamodes are derived from the modes of the major scale: Ionian, Dorian, Phrygian, Lydian, Mixolydian, Aeolian, and Locrian, and the modes of the melodic
minor: Melodic Minor, Dorian b2, Lydian Augmented, Lydian b7, Mixolydian b13, Locrian $^\#2$, and Altered. This taxonomy of scales is relatively universal in jazz.54 Other scalar possibilities will be also considered as the extension of the system. The system of “hexamodes” presented here represents an improvement of existing modal pedagogy for the following reasons: 1) each tonal function is accompanied by a complete family of hexamodes, 2) hexamodes are ordered hierarchically and show a gradual saturation of chromatic pitches, and 3) the system offers a collection of hexamodes underlined by an attractive intervallic content for the generation of jazz formations (and melodic lines). In order to be qualified as a hexamode of a particular nexus collection, the following notes have to be present within the structure of the hexamode: the root, the 3^{rd}, and primary extensions. Within the Major and Minor Nexus Collections one of the two primary extensions, 7th and 6th, needs to be present. In the Dominant Nexus Collection the root, the 3rd (or the 4th in the suspended), and the $b7$ must be present; and in the Intermediary Nexus Collection the rules are more relaxed; yet the root, the 3rd (or $b2^{nd}$, 4th) and one of the primary extensions should generally be present. The other three notes can be used at the performer’s discretion.

To simplify the presentation of harmonic function and indicate the possibility of substituting one collection with another, I locate all nexus collections over a single root, C.55 There are no limits to the number of harmonic formations that can be invoked from each collection. The generation of voicings corresponds to the harmonization of a given hexamode with chords of various cardinalities. One of many advantages of hexamodes is their diverse intervallic content. The intervallic structure of hexamodes is not as predictable as it is in their seven-note source sets. In the latter, only two intervals, minor and major 2nds, permeate the structure of a scale. In the former, three unique intervals help locate a six-note segment. The omission of a single note from the structure of a seven-note scale does not influence the modal status of a corresponding hexamode. Quite the opposite; its modal characteristics become more pronounced and its structure more attractive to the improviser. Consider Figure 3.1 as an example.

54 See Ron Miller, \textit{Modal Jazz Composition & Harmony} (Advance Music, 1996), p. 17-20. 55 Hence all the hexamodes begin on C.
The “natural base” of jazz voicings is compatible with the overtone series. George Russell in his seminal study prefers the Lydian scale as a more appropriate source-set for the generation of jazz scales and voicings. The presence of #11 within the Lydian scale is consistent with the overtone series and better represents the acoustical property of the tone. Jazz musicians find this natural characteristic very appealing as they often finesse their voicing according to the overtone series and prefer #11 to b4 within a major chord. Figure 3.1 illustrates the pitch content of the Ionian hexamode. The omission of b4 from the structure of the Ionian hexamode does not affect its tonal characteristics. The overall framework of the hexamode becomes more congruent with the overtone series and more attractive from the intervallic standpoint. The removal of b4 eliminates a troublesome interval of a minor 9th between e1 and f2. Figure 3.2 portrays this scenario.

57 Note that the 11th harmonic is 1/4 tone (49 c.) flat of the “tritone” of equal temperament.
Note that the minor 9 between e1 and f2 effectively masks the modal clarity of the Ionian mode when viewed as a source-set for chord voicings. From a practical point of view, a six-note collection with three unique intervals, minor second, major second and minor third, turns out to be a much more desirable collection for the derivation of chord voicings. Compare the family of trichords, one derived from the Ionian mode (Figure 3.3), and another from the Ionian hexamode (Figure 3.4).

Figure 3.3

Ionian Mode - Triadic Voicings

Ionian Mode

![Ionian Mode](image)

Figure 3.4

Ionian Hexamode - Trichords

Ionian Hexamode

![Ionian Hexamode](image)

The trichords in Figure 3.3 determine the tonality of the key and establish the hierarchical dependence of the secondary triads. These triads capture the tonality of the key in a convincing manner. The sole purpose of Figure 3.4 (and subsequent figures) is to generate different voicings for the same harmonic function as well as illustrate which chords of different function can be represented by the same intervallic structure. Though the same voicings may be found in different collections, their ultimate harmonic function is context-dependent. The ability to
recognize these structures as representatives of different harmonic function is of the utmost importance for the improviser. Note that all the voicings display asymmetrical designs and, as such, may be used as the left hand structures for a Cma7 chord (and other formations, as indicated).

The Major Nexus Collection

The Major Nexus Collection (MNC, henceforth) is the union (or superset) of the Ionian, Lydian, and Lydian Augmented hexamodes. Consequently, each hexamode is a unique subset of the nexus collection. The functionality of the collection is context-dependent and usually acquires a tonic or predominant function within a progression.

Table 3.1 illustrates the MNC.

Table 3.1

Major Nexus Collection

<table>
<thead>
<tr>
<th>Major Nexus Collection - MNC (complement D♭, E♭, F, B♭)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C D E F♯ G G♯ A B</td>
</tr>
</tbody>
</table>

Subsets of MNC

Ionian

| C D E G A B |

Lydian

| C D E F♯ A B |

Lydian Aug.

| C D E F♯ G♯ B |

The complement of the “C” MNC consists of <D♭, E♭, F, B♭>, for these pitches would confound the structure of a typical major sonority. It is possible, however, to justify the presence of the complement within the MNC by invoking the concept of nexus borrowing. Nexus borrowing enables the occurrence of pitches from different nexus collections in a collection in which these pitches are not present. For instance, to explain the occurrence of e♭(d♯) within a C

58 Synthetic hexamodes result from combining the root, 3rd, and primary extensions (6th of 7th) with other three notes from the nexus collection.
major chord, we can posit that another voicing from the C-based Minor or Intermediary Nexus Collections temporarily controls the harmonic space occupied by the C major chord.59

There is a strict hierarchy among notes within the collection. A detailed hierarchical account of chord tones, as well as primary and secondary extensions, is shown in Table 3.2.

\textbf{Table 3.2}

\textbf{MNC - Extensions and Chord Tones}

\begin{center}
\begin{tabular}{|c|c|c|c|}
\hline
\textbf{HEXAMODE} & \textbf{CHORD TONES} & \textbf{EXTENSIONS} & \\
& & \textit{Primary} & \textit{Secondary} \\
\hline
\textbf{Ionian} & C, D, E, G, A, B & C, E, G & B(7) A(6)* \\
& & & D(9) \\
& & & A(13, 6)* \\
\textbf{Lydian} & C, D, E, F\# , A, B & C, E & B(7) \\
& & & D(9) \\
& & & F\#(11) \\
& & & A(13) \\
\textbf{Lydian Augmented} & C, D, E, F\# , G\# , B & C, E & B(7) \\
& & & D(9) \\
& & & F\#(11) \\
& & & G\#(5) \\
\hline
\end{tabular}
\end{center}

*The A within a major chord functions either as a 6th or a 13th. It becomes the 13th only when a chordal structure contains the 7th. It becomes the 6th only when the 7th is not present, as in a C6/9 sonority. The status of A as the 13th is consistent with the Overtone-Series model.

\textbf{Voicing for the MNC}

The concept of jazz voicing has been widely discussed in jazz literature.60 Hexamodes, with their asymmetrical design, are very effective for the construction of voicings whose structure is devoid of intervallic monotony. Figure 3.5.a shows four-part, close structures built on each degree of the Ionian, Lydian, and Lydian Augmented hexamodes. Notice that the opening sonority, with its specific ordering of notes, establishes the precedent for all the consecutive voicings.

59 The spelling of chord tones, in more complicated harmonic formations, does not adhere to the rules commonly observed in Common-Practice tonality. Therefore, the concept of enharmonic equivalence will necessarily be adopted to account for more complex chordal structures.

Voicings for MNC - Close Structures

Ionian Hexamode

Lydian Hexamode

Augmented Hexamode
Figure 3.5.b

Voicings for MNC - Ionian Hexamode

Ionian Hexamode

First Inversion

Second Inversion

Third Inversion
Figure 3.5.c

Voicings for MNC - Lydian Hexamode

Lydian Hexamode

First Inversion

Second Inversion

Third Inversion
Figures 3.5.b, 3.5.c, and 3.5.d, illustrate the opening chord in first, second, and third inversion, respectively.

By applying one of the most common jazz techniques for voicing chords, the “drop two,” we can easily generate a number of open-sounding sonorities as shown in Figure 3.6. Mark Levine defines the “drop-two” as a technique by which “… jazz pianists and arrangers make four-part close sound fuller, [by] dropping the second note from the top of the chord down an octave in a style called drop 2.”

Figure 3.6

Voicings for MNC - Drop Two

Ionian Hexamode

"Drop-two"

Lydian Hexamode

"Drop-two"

Augmented Hexamode

"Drop-two"
Barry Harris, one of the most influential jazz educators, posits that other chord members can also be transferred down an octave using such techniques as “drop 3” (Figure 3.7.a); “drop 2+4” (Figure 3.7.b); “drop 2+3” (Figure 3.7.c); and “drop 1+3” (Figure 3.7.d). Harris is widely recognized as having codified the harmonic and melodic properties of Bebop language, and probably the first one to develop these voicing techniques.

Figure 3.7.a

Voicings for MNC - Drop 3

- **Ionian Hexamode**
- **Lydian Hexamode**
- **Augmented Hexamode**
Voicings for MNC - Drop 2+4

Ionian Hexamode

"Drop 2+4"

Lydian Hexamode

"Drop 2+4"

Augmented Hexamode

"Drop 2+4"
Voicings for MNC - Drop 2+3

Ionian Hexamode

"Drop 2+3"

Lydian Hexamode

"Drop 2+3"

Augmented Hexamode
Voicings for MNC - Drop 1+3

Ionian Hexamode

"Drop 1+3"

Lydian Hexamode

"Drop 1+3"

Augmented Hexamode

"Drop 1+3"
When we multiply the number of inversional possibilities and the types of dropping techniques, an impressive collection of voicings derived from the Ionian hexamode becomes available to the improviser. Since all the notes of the Ionian hexamode have either the status of chord tones, primary or secondary extensions, all the four-part voicings in Figure 3.8 can represent the structure of a C major chord.

Some of these voicings work better than others. The pedagogical implications of the method suggest that improvisers should gain familiarity with these structures in all 12 keys.

\footnote{Some of these voicings work better than others. The pedagogical implications of the method suggest that improvisers should gain familiarity with these structures in all 12 keys.}
As has been mentioned, the distinctive ordering of notes in the opening sonority sets up the precedent for all consecutive voicings. By following a step-by-step method, shown in Procedure A, we can apply the same techniques to generate three-, four-, five-, or six-part structures.
Procedure A

Step 1: Establish a specific ordering of pitches in the opening sonority.
Step 2: Continue the pattern on each scale degree of a hexamode.
Step 3: Apply various dropping techniques, and continue the pattern on each scale degree of a hexamode.
Step 4: Invert the opening sonority.
Step 5: Repeat step 3.

Figure 3.9 lists five distinct four-part voicings for a major chord with different dropping techniques derived from the Ionian hexamode.
By applying the steps from Procedure A, we can gain a considerable familiarity and expertise with handling various types of major voicings.
In an analogous manner, we can practice voicings derived from the Lydian and Lydian Augmented hexamodes. Figures 3.10 and 3.11 show the family of Lydian and Lydian Augmented chords.

Figure 3.10

Lydian Hexamode - Four-Part Voicings

<table>
<thead>
<tr>
<th>Lydian Hexamode</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

Close Position

"Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

![Music Notes](image)

Close Position

"Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

![Music Notes](image)

Close Position

"Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

![Music Notes](image)

Close Position

"Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

![Music Notes](image)

Close Position

"Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

![Music Notes](image)
Figure 3.11

Augmented Hexamode - Four-Part Voicings

C - Augmented Hexamode

Close Position "Drop two" "Drop 2+4" "Drop 1+3" "Drop 3"

*** The structure of these voicings works well in other formations such as, D7, Am, F♯m, Bb7, and others.
Five and six-part formations are common in jazz, the generation of these voicings following Procedure A. Step 3, however, will be slightly modified in five-part chords to include dropping techniques such as: “drop 2,” “drop 2+3,” “drop 2+4,” “drop 3+4,” “drop 3+5.” The application of dropping techniques to six-part structures is cumbersome and tedious, and leads to a complete identification of voicing with the source set. The overall intervallic characteristics of the opening sonority should determine the harmonization of the hexamode. Figure 3.12 includes five-part harmonization of the Ionian hexamode using various “dropping techniques.”

Figure 3.12
Ionian Hexamode - Five-Part Voicings

Although other dropping techniques can be produced, the ones mentioned generate the most common verticalities.

The combination of tertian and quartal structures is, by and large, the most effective technique in creating voicings. Other intervallic projections are also possible and will be shown.
An exploration of six-part voicings of the MNC is shown in Figure 3.13.

Figure 3.13

The Minor Nexus Collection

The Minor Nexus Collection (mNC, henceforth) is the sum of the pitch content of the Dorian, Aeolian, Melodic minor, Lydian, and Harmonic minor hexamodes. The ten-note collection <c, d, eb, f , f\# , g, ab, a, bb, b>, plus its complement <db, e>, constitute the aggregate. The admission of f\# into the structure of the mNC stretches its boundaries, given its chromatic origins and its more familiar occurrence within the MNC (or Intermediary Nexus Collection as the b5). Since f\# constitutes the #11, its presence within a minor chord can be justified on the same basis as its occurrence within a major chord.65 The Lydian minor hexamode is a subset of the whole-half octatonic collection. The segment <c, d, eb, f\#, a, b> contains the root and the 3rd of the minor chord; thus, the two most important notes defining the chord’s quality are present. The Harmonic hexamode, represented by the <c, d, eb, f\#, g\#, b> subset, shares a similar structure with the Lydian hexamode; the presence of the <g\#, b> dyad suggests the harmonic minor scale, hence its name. The function of the mNC within a progression is the same as for the MNC, and depends on the surrounding context. Table 3.3 illustrates the distribution and hierarchy of hexamodes within the mNC.

65 Except that minor is indirectly related to the overtone series.
Table 3.3

Minor Nexus Collection

Minor Nexus Collection- mNC
(complement D♭, E,)

| M | i | n | o | r | N | e | x | u | s | C | o | l | l | e | c | t | i | o | n |
| C | D | E♭ | F | F♯ | G | A♭ | A | B♭ | B |

Subsets of mMC

Dorian

| C | D | E♭ | F | A | B♭ |

Aeolian

| C | D | E♭ | G | A♭ | B♭ |

Melodic

| C | D | E♭ | F | A | B |

Lydian ma7th

| C | D | E♭ | F♯ | A | B |

(Lydian b7th

| C | D | E♭ | F♯ | A | B♭) **

Harmonic #11

| C | D | E♭ | F♯ | G♯ | B |

There are two versions of Lydian hexamode.

A hierarchical order of pitches and their function within the collection is given in Table 3.4.
Table 3.4

mNC - Extensions and Chord Tones

<table>
<thead>
<tr>
<th>HEXAMODE</th>
<th>CHORD TONES</th>
<th>EXTENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
</tr>
<tr>
<td>Dorian</td>
<td>C, D, E♭, F, A, B♭</td>
<td>C, E♭</td>
</tr>
<tr>
<td>Aeolian</td>
<td>C, D, E♭, G, A♭, B♭</td>
<td>C, E♭</td>
</tr>
<tr>
<td>Melodic</td>
<td>C, D, E♭, F, A, B</td>
<td>C, E♭</td>
</tr>
<tr>
<td>Lydian ma7th</td>
<td>C, D, E♭, F♯, A, B</td>
<td>C, E♭</td>
</tr>
<tr>
<td>Lydian b7th</td>
<td>C, D, E♭, F, A♭, B♭</td>
<td>C, E♭</td>
</tr>
<tr>
<td>Harmonic #11</td>
<td>C, D, E♭*, F♯, G♯, B</td>
<td>C, E♭</td>
</tr>
</tbody>
</table>

*The A within a minor chord functions either as a 6th or a 13th. It acquires the 13th status only when a chordal structure consists of the 7th. It becomes the 6th only when the 7th is not present, as in C6/9 sonority. The status of A as the 13th concurs with the overtone series.

** This type of collection is often used as a chromatic elaboration of a major chord.

The pitch E♭ is enharmonically equivalent with D♯.

Although g partakes in the collection, its presence within the four basic hexamodes in not essential.66

Voicing for the mNC

The rules for generating voicings for the mNC are the same as those prescribed in Procedure A. Figure 3.14 includes a number of four-, five-, and six-part voicings for the mNC.

66 Similar to Common-Practice music, the presence or absence of the 5th within a chordal structure does not affect a chord’s major or minor quality.
Figure 3.14
mNC - Four-, Five-, Six-Part Voicings
Dorian Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Bb doubled)
Aeolian Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (C and Ab doubled)
Melodic Minor Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (B doubled)
Lydian ma7th Minor Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (A doubled)
Lydian m7th Minor Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (A doubled)
Harmonic #11 Minor Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (B doubled)
The Intermediary Nexus Collection

The pitch class set <c, d♭, d, e♭, f, g♭, g, a♭, a, b♭>, and its complement <c, b> constitutes the aggregate. The Intermediary Nexus Collection (INC, henceforth) usually has a predominant function and serves as a link between various collections. Characterized by a high concentration of chromatic pitches, the intermediary hexamodes usually acquire ornamental functions. Their use within a progression is controlled by rules of voice leading. The map of the collection is shown in Table 3.5.

Table 3.5

Intermediary Nexus Collections
(complement E, B)

<table>
<thead>
<tr>
<th>C</th>
<th>D♭</th>
<th>D</th>
<th>E♭</th>
<th>F</th>
<th>G♭</th>
<th>G</th>
<th>A♭</th>
<th>A</th>
<th>B♭</th>
</tr>
</thead>
</table>

Subsets of INC

Phrygian

<table>
<thead>
<tr>
<th>C</th>
<th>D♭</th>
<th>F</th>
<th>G</th>
<th>A♭</th>
<th>B♭</th>
</tr>
</thead>
</table>

Locrian

<table>
<thead>
<tr>
<th>C</th>
<th>D♭</th>
<th>F</th>
<th>G♭</th>
<th>A♭</th>
<th>B♭</th>
</tr>
</thead>
</table>

Locrian #2

<table>
<thead>
<tr>
<th>C</th>
<th>D</th>
<th>E♭</th>
<th>F</th>
<th>G♭</th>
<th>B♭</th>
</tr>
</thead>
</table>

Dorian b²

<table>
<thead>
<tr>
<th>C</th>
<th>D♭</th>
<th>E♭</th>
<th>F</th>
<th>A</th>
<th>B♭</th>
</tr>
</thead>
</table>

Table 3.6 illustrates the hierarchy between chord tones and primary and secondary extensions.
Table 3.6
INC - Extensions and Chord Tones

<table>
<thead>
<tr>
<th>HEXAMODE</th>
<th>CHORD TONES</th>
<th>EXTENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary</td>
<td>Secondary</td>
<td></td>
</tr>
<tr>
<td>Phrygian</td>
<td>C, D(^b), F, G, A(^b), B(^b)</td>
<td>C, G</td>
</tr>
<tr>
<td></td>
<td>B(^b)(7)</td>
<td>A(^b)(6)</td>
</tr>
<tr>
<td></td>
<td>D(^b)(9)</td>
<td>F(11)</td>
</tr>
<tr>
<td>Locrian</td>
<td>C, D(^b), F, G(^b), A(^b), B(^b)</td>
<td>C, G(^b)</td>
</tr>
<tr>
<td></td>
<td>B(^b)(7)</td>
<td>A(^b)(6)*</td>
</tr>
<tr>
<td></td>
<td>D(^b)(9)</td>
<td>A(^b)(13,6)*</td>
</tr>
<tr>
<td>Locrian #2</td>
<td>C, D, E(^b), F, G(^b), B(^b)</td>
<td>C, E(^b), G(^b)</td>
</tr>
<tr>
<td></td>
<td>B(^b)(7)</td>
<td>D(9)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>F(11)</td>
</tr>
<tr>
<td>Dorian b2</td>
<td>C, D(^b), E(^b), F, A, B(^b)</td>
<td>C, Eb</td>
</tr>
<tr>
<td></td>
<td>B(^b)(7)</td>
<td>A(6)*</td>
</tr>
<tr>
<td></td>
<td>D(^b)(9)</td>
<td>F(11)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A(13,6)*</td>
</tr>
</tbody>
</table>

*The A (A\(^b\)) within a chord functions either as a 6\(^{th}\) or a 13\(^{th}\). It acquires the 13\(^{th}\) status only when a chordal structure consists of the 7\(^{th}\). It becomes the 6\(^{th}\) only when the 7\(^{th}\) is not present, as in C\(^6\)/9 sonority. The status of A as the 13\(^{th}\) concurs with the overtone series.

Voicings for the INC

Procedure A applies in generating voicings for the INC. Selected voicing techniques pertaining to the collection are included in Figure 3.15.
Figure 3.15

INC - Four-, Five-, Six-Part Voicings

Phrygian Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (F doubled)
Locrian Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (F doubled)
Locrian #2 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Gb doubled)
Dorian b2 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (F and Bb doubled)
The Dominant Nexus Collection

The Dominant Nexus Collection (DNC, henceforth) is the largest, most flexible, and arguably, the most important one musically. Its presence guarantees the functional polarity and establishes the tonal direction of a jazz progression. Occasionally, dissonant formations derived from the DNC display strong but conflicting tonal predispositions. The richness of jazz syntax, similar to that of the late 19th century style, allows an interchangeable use of the dominant with tonic and/or subdominant functions. The DNC comprises the conventionalized assemblies of hexamodes grouped into two unique families, regular dominant and suspended dominant. Since 3 and 4 are members of two distinct DNCs (see Table 3.7.a and 3.7.b), they cannot be used simultaneously within a single hexamode. Therefore, the presence of the 3rd, e, suggests the regular Dominant Nexus Collection (rDNC, henceforth), and the presence of the 4th (11th), f, implies the suspended Dominant Nexus Collection (sDNC, henceforth).
Table 3.7.a

Regular Dominant Nexus Collection

<table>
<thead>
<tr>
<th></th>
<th>C</th>
<th>D♭</th>
<th>D</th>
<th>E♭</th>
<th>E</th>
<th>F</th>
<th>F♯</th>
<th>G</th>
<th>A♭</th>
<th>A</th>
<th>B♭</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subsets of regular Dominant Nexus Collection - rDNC</td>
<td></td>
</tr>
<tr>
<td>Mixolydian</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>A</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixolydian b9</td>
<td>C</td>
<td>D♭</td>
<td>E</td>
<td>G</td>
<td>A</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mixolydian b13</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>G</td>
<td>A♭</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lydian b7</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F♯</td>
<td>A</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered b9</td>
<td>C</td>
<td>D♭</td>
<td>E</td>
<td>F♯</td>
<td>A♭</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered #9</td>
<td>C</td>
<td></td>
<td>E♭</td>
<td>F♯</td>
<td>A♭</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Altered b9/#9</td>
<td>C</td>
<td>D♭</td>
<td>D♯</td>
<td>E</td>
<td>A♭</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whole-Tone</td>
<td>C</td>
<td>D</td>
<td>E</td>
<td>F♯</td>
<td>A♭</td>
<td>B♭</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 3.7.b

Suspended Dominant Nexus Collection

| C | D♭ | D | E♭ | E | F | F♯ | G | A♭ | A | B♭ |

Subsets of suspended Dominant Nexus Collection- sDNC

Mixolydian Suspended

| C | D | F | G | A | B♭ |

Mixolydian Suspended b⁹

| C | D♭ | F | G | A | B♭ |

Mixolydian Suspended b⁹/#11

| C | D♭ | F | F♯ | A | B♭ |

Mixolydian Suspended b⁹/b¹³

* | C | D♭ | F | G | A♭ | B♭ |

Mixolydian Suspended b⁹/#11/b¹³

** | C | D♭ | F | F♯ | A♭ | B♭ |

* same as Dorian b² from the INC.

** same as Locrian from the INC.

Tables 3.8.a and 3.8.b show the distribution of chord tones and primary and secondary extensions within the rDNC and sDNC, respectively.
Table 3.8.a
rDNC - Extensions and Chord Tones

<table>
<thead>
<tr>
<th>HEXAMODE</th>
<th>CHORD TONES</th>
<th>EXTENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
</tr>
<tr>
<td>Mixolydian</td>
<td>C, E, G, A, B♭</td>
<td>C, E, G</td>
</tr>
<tr>
<td>Mixolydian b9</td>
<td>C, D♭, E, G, A, B♭</td>
<td>C, E, G</td>
</tr>
<tr>
<td>Lydian♭7</td>
<td>C, D, E, F♯, A, B♭</td>
<td>C, E</td>
</tr>
<tr>
<td>Mixolydian b13</td>
<td>C, D, E, G, A♭, B♭</td>
<td>C, E, G</td>
</tr>
<tr>
<td>Altered b9</td>
<td>C, D♯, E, F♯, A♭, B♭</td>
<td>C, E</td>
</tr>
<tr>
<td>Altered #9</td>
<td>C, D♯, E, F♯, A♭, B♭</td>
<td>C, E</td>
</tr>
<tr>
<td>Altered b9/♭9</td>
<td>C, D♯, D♯, E, A♭, B♭</td>
<td>C, E</td>
</tr>
<tr>
<td>Whole Tone</td>
<td>C, D, E, F♯, A♭, B♭</td>
<td>C, E</td>
</tr>
</tbody>
</table>

Table 3.8.b
sDNC - Extensions and Chord Tones

<table>
<thead>
<tr>
<th>HEXAMODE</th>
<th>CHORD TONES</th>
<th>EXTENSIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Primary</td>
</tr>
<tr>
<td>Mixolydian Sus</td>
<td>C, D, F, G, A, B♭</td>
<td>C, G</td>
</tr>
<tr>
<td>Mixolydian Sus b9</td>
<td>C, D♭, F, G, A, B♭</td>
<td>C, G</td>
</tr>
</tbody>
</table>

Figures 3.16 and 3.17 provide four-, five-, and six-part voicings for rDNC and sDNC.
Figure 3.16
rDNC - Four-, Five-, Six-Part Voicings

Mixolydian Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (E doubled)
Lydian b7 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Bb doubled)
Mixolydian b13 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (E doubled)
Altered b9 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (E doubled)
Altered #9 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (E doubled)
Whole-Tone Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Bb doubled)
Figure 3.17

sDNC - Four-, Five-, Six-Part Voicings
Mixolydian Hexamode

4-part voicing

5-part voicings

6-part voicing (no doubling)

6-part voicing (F, Bb doubled)
Mixolydian b9 Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (A tripled)
Mixolydian (b9, b13) Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Bb doubled)
Mixolydian (b9,#11,b13) Hexamode

4-part voicing

5-part voicing

6-part voicing (no doubling)

6-part voicing (Bb doubled)
To demonstrate an impressive harmonic potential of the Hexamodal System, I close this chapter with my reharmonization of “Stella By Starlight,” (by Victor Young and Ned Washington). Originally written for a ghost movie, its dreamy and mysterious character can be expressed in many different ways. Example 3.1 shows a model reharmonization of “Stella By Starlight” using harmonic vocabulary derived exclusively from the Hexamodal System.

Example 3.1

For a detailed analysis of the “head,” see Chapter 4.

67 For a detailed analysis of the “head,” see Chapter 4.
With the exception of few measures (m. 9 and m. 29), this reharmonization uses the harmonic foundation corresponding to the jazz changes (see Example 4.3). In general, the voice leading of the reharmonization is mostly stepwise, balanced by the use of contrary, parallel, and oblique motions between the voices. Each harmonic formation is categorized as a member of a specific nexus collection.

Conclusion

The Hexamodal System attempts to provide a systematic taxonomy of chord-scale relationships in jazz, and to offer a range of possibilities for the generation of chordal structures. In the present study, I emphasize the harmonic dimensions of the system without considering its linear potential. Further research can explore the applicability of the system in linear improvisation.
Part II
Analytical Fallout:
Keith Jarrett’s Treatment of Standard Tunes

Chapter 4
Reharmonization of Standards

Introduction

In recent years, analysis of jazz improvisation has received consideration long overdue from both classical and jazz communities. The scope of jazz analytical writings covers a plethora of theoretical issues, including Schenkerian theory, pitch-class set theory, formulaic analysis, and thematic-motivic analysis.\(^\text{68}\) To assist the aspiring jazz player, a number of publications have explained improvisation by recourse to jazz harmonic syntax and the relationship between chords and scales, as well as numerous aspects of jazz rhythm.\(^\text{69}\) Finally, analytical study of the standard tunes occupies a prominent role in jazz scholarship, although the

analytical methods employed sometimes seem to be at odds with jazz theory as taught and practiced by jazz musicians. Clearly, the fields of jazz theory and analysis have proven fertile grounds and will continue to be worthy of scholarly attention.

Formulaic analysis, as pioneered by Owens (1974), was an important theoretical breakthrough attempting to demonstrate the role of melodic formulas in Charlie Parker’s improvisation. While Owens’ work zeroed in on surface elements of the musical structure without examining the relationship between formulas and the corresponding harmonic, contrapuntal and formal structure, Henry Martin’s book (1996) addressed these associations more thoroughly. As a response to the formulaic method, Martin showed the efficacy of a modified Schenkerian analytical technique on music subjected to formulaic analysis. The theory of phrase models and formal prototypes, outlined in Part 1 (Chapters 1 and 2), resembles Martin’s theoretical approach. It unifies three components of musical structure: melody, harmony, and counterpoint, and demonstrates their importance in the process of analysis and transformation of standard tunes.

The ephemeral nature of jazz improvisation and the lack of scores can hamper analytical work, and the improvisation process can be hidden from the analyst. We can begin to deconstruct the “improvisational myth” by employing classical and jazz theories in tandem, and concentrating on normative procedures which accompany the process of improvisation. In pursuing a common goal—an unbiased inquiry into the structure of improvised music—both theoretical traditions can draw not only on each other’s analytical methodologies, but can also be edified by comparative analysis of the other’s traditions. Currently, an even tighter exchange of classical and jazz methodologies seems inevitable as jazz scholarship has permanently established its place within academia.

While the basic tonality of standard tunes can be examined using various analytical tools, explanations of jazz performance require modified theoretical methodologies and a practical understanding of the jazz idiom. Jarrett’s renditions of standard tunes reveal a sophisticated approach to improvisation in which two traditions, classical and jazz, merge into a unified whole. Being equally adept in both practices, Jarrett, through his vast recording output, demonstrates that his familiarity with classical and jazz traditions enriches the aesthetic value of his performances in both repertoires. Similarly, Common-Practice and jazz theoretical traditions engage in a dialogue concerning the nature of improvisation, the outcome yielding new methods of analytical inquiry.

71 A growing number of Ph.D dissertations and the creation of Jazz DMA programs throughout the United States provide evidence of the ascendancy of jazz research.
Jarrett’s “Standards” Trio

Although Keith Jarrett began his recording career as a bebop player in 1966, he soon became caught up in more recent musical styles, such as rock, modal and free jazz, and others. His artistic activities from the late sixties to the early 1980’s show a high degree of individuality and the unique ability to adapt effortlessly to various musical challenges. Whether creating simple melodies on a Pakistani flute, playing tablas, or extemporizing highly celebrated solo piano concerts, Jarrett’s idiosyncratic voice transcends the music and exhibits an incessant flow of improvisatory ideas. One of the most versatile artists on the contemporary jazz scene, he has also embarked on performing classical music and composing for symphonic and chamber ensembles. With such diverse and multi-cultural musical backgrounds, Jarrett’s style constitutes a complex, yet eclectic whole in which classical, blues, stride, be-bop, folk, free, modal, and world music elements interact with one another.

In 1983, Jarrett took on a new challenge, the interpretation of the American Songbook within a trio format. The “Standards” trio, with bassist Gary Peacock and drummer Jack DeJohnette, has continued the tradition of the jazz piano trio – a group format established by Nat “King” Cole and further developed by Ahmad Jamal, Oscar Peterson, Bill Evans, and others. Even though the band members displayed some reservation about playing and recording standard tunes, it soon became evident that Jarrett’s vision of this enterprise is as creative and marked by

72 His early recording with the Art Blakey’s Jazz Messengers Buttercorn Lady (Limelight LM 82034, 1966) has definite bebop characteristics.
73 Outstanding projects include collaborations with Charles Lloyd – Dream Weaver (Atlantic SD 1459, 1966), Live at Antibes (Atlantic SD 1586, 1966), Forest Flower (Atlantic SD 1473, 1966), Charles Lloyd-In Europe (Atlantic SD 1500, 1966), Live At The Fillmore (Atlantic SD 1481, 1967), In The Soviet Union (Atlantic SD 1571, 1967); Miles Davis – Live-Evil (Columbia C 30995, 1970), Miles Davis At The Fillmore (Columbia G 30038 C), Isle Of Wight, Atlanta Pop Festival (CBS G 3X-30805, S, 66311, 1970); Gary Burton – Gary Burton and Keith Jarrett (Atlantic SD 1577, 1970); Airto Moreira – Airto Free (CTI 6020, 1972); Freddie Hubbard – Sky Dive (CTI 6018, 1972); Paul Motion – Conception Vessel (ECM 1028 ST, 1972); Kenny Wheeler – Gnu High (ECM 1969 ST, 1975); Charlie Haden – Closeness (Horizon SP 710, 1976); Gary Peacock – Tales Of Another (ECM 1101, 1977).
74 Spirits (ECM 1333/4, 1985, Pakistani flute, tablas, and other instruments).
a stamp of individuality as his other highly successful projects. Given the band’s longevity and an impressive touring schedule, it can be argued that the “Standards” project has been Jarrett’s most successful undertaking to date. The trio setting presents Jarrett with three unique opportunities: 1) engaging the rhythm section in a conversational rhetoric on familiar material, 2) imbuing standard tunes with his distinctive vocabulary of harmonic and melodic devices, and 3) transforming the material through a lengthy solo introductions, transitions, and codas. By performing standard tunes, Jarrett has established a strong connection with jazz tradition. Yet, his homage to the past is highly original, marked by a complex matrix of formal, harmonic, melodic, and contrapuntal relationships.

The present chapter examines musical structure in the original versions of “It Never Entered My Mind” (by Richard Rodgers and Lorenz Hart), and “Stella By Starlight” (by Victor Young and Ned Washington), and then explores Jarrett’s unique elaborations of the structure of these tunes. “It Never Entered My Mind” was recorded in January of 1983 – the first live recording after the band’s reunion at the Power Station recording studio in New York City. The album, “Standards, Vol. 1,” on which this particular tune appeared, initiated an artistic collaboration which by now, has produced an impressive number of albums. “Stella By Starlight” was recorded two and half years later on July 2nd, 1985, at the Palais des Congrès Studios de la Grande, and opens the album “Standards Live.” The time separating these two live sessions did not affect the group’s performance philosophy. It seems that the impressive musical understanding and artistic intuition between Jarrett, Peacock, and DeJohnette began from the first recording date. Jarrett’s playing, however, has undergone some important changes regarding the organization of a performance as a whole. On “Standards, Vol. 1,” Jarrett does not play extended solo introductions - a hallmark that later becomes identified with his playing. On the other hand, the album “Standards Live” contains two extensive solo introductions: one to “Stella By Starlight,” and another to “Too Young To Go Steady.”

Broadly speaking, the harmonic and formal organization of standard tunes follows the rules of Common-Practice tonality. The chordal structure of “It Never Entered My Mind” and “Stella By Starlight” consists of mostly four-part formations with the primary extensions as

77 In February of 1977 the same group, under Peacock’s leadership, recorded Tales of Another. Although the first album Tales of Another was recorded by this trio in February of 1977 (but under Peacock as the leader), it was not until 1983 that the “Standards” trio began recording again. This collaboration was initiated by Manfred Eicher (the record producer for the ECM label).
78 See Discography. From the same session comes “Standards, Vol. 2.”
79 Except for a brief, pedal point introduction to “Meaning Of The Blues,” as well as an in-time rendition of the final A section of “All the Things You Are,” “Standards, Vol. 1” does not include long introductions.
80 The introduction to “Stella By Starlight” is probably one of the most successful ever recorded and will be discussed at length in the next chapter. The introduction to “Too Young To Go Steady” is shorter, yet much more elaborated than short introductions on “Standard, Vol. 1.”
81 See Chapters 1 and 2.
essential chord members, and secondary extensions as ornamentations of basic sonorities. The
tonal organization of these tunes draws extensively on ii-V-I progressions in local and global
forms. A specific type of phrase model shows the fundamental harmonic progression, the basic
framework of the melody, and explains the unique relationship between the melody and its
harmonic support. The behavior of the essential jazz counterpoint – i.e. a mostly stepwise, two-
voice “guide tone” line – governs the organization of these tunes, suggesting possibilities for
further elaboration in harmonic and contrapuntal domains. The inherent phrase and formal
structures maintain stability; thus, they may be conveniently transformed, yet remain viable
prototypical archetypes.

“It Never Entered My Mind”

Original Version

“It Never Entered My Mind” is a ballad from the show “Higher and Higher” by Richard
Rodgers and Lorenz Hart (for the lead-sheet version consult The Standards Real Book, Sher
Music CO., 2000 p. 249). We may posit a monotonal prototype as a general framework of the
song – an AABA form with a two-measure phrase extension following its last A section.

General Observations

One of the most apparent features of “It Never Entered My Mind” is its overtly diatonic
character and, according to Alec Wilder “…a very strange and effective harmonic device heard
only one other time in popular music, in Cole Porter’s Ev’ry Time We Say Goodbye. For six
measures it moves back and forth every half measure from F major to A minor.” The A
sections of these tunes share identical content, excepting the last two measures of the first two
sections, and the last four measures of the last A (these constitute a phrase extension). The
monotonal aspect of “It Never Entered My Mind” is well evidenced not only by the forward
projection of the tonic in the A sections, but also by the prolongation of the tonic in the bridge
section. Since the tune does not tonicize a new key area in the bridge – in contradistinction to
most standard tunes – it may be analyzed sui generis, i.e. within its own category. Given the
monotonal prototype, a song within this class tends to have relatively simple phrases.

The first eight measures project the tonic via Phrase Model 1 and a cadence on V7 in m.
8. Measures 9-16 feature the same melodic and harmonic content. The only difference between
the first two phrases is the preparation of the opening chord in the bridge, F6/A. An inconclusive
closure of the second A section reiterates the dominant 7th from the end of the first A section. Its
placement is consistent with a general description of the AABA prototype as discussed in
Chapter 2. In order to facilitate motion to F6/A in the bridge, C7 includes a passing 7th in the bass
(on its way to A, a third of F6). Although the harmonic content of the bridge still remains in the
tonic, mm. 17-24 employs noticeable modifications of the melody as well as alterations in its

82 The production of the show was premiered in New York on April 4th, 1940.
underlying chord progressions. Rhythmically, the melody becomes less active, and with the exception of the opening leap <d^2-f^1>, it displays a stepwise motion that prepares the climactic e^2 in m. 23. The harmonic design of the bridge is almost identical with that of the A section and can be classified as Phrase Model 1. The only difference is the presence of a diminished 7th chord in m. 22 that anticipates the arrival of V. The final A section, in addition to its two-measure phrase extension, departs from the prevailing diatonic vocabulary and tonicizes ii via the ii^7-V progression in m. 30, hence the use of Phrase Model 1 with a harmonic departure on ii. It is interesting to note that the final cadence of the original version, I-IV^6-V^7-I, contradicts the typical jazz ending ii-V-I. Figure 4.1 shows the distribution of phrase models.

Figure 4.1

Prototype: *It Never Entered My Mind*

<table>
<thead>
<tr>
<th>Phrase Model 1</th>
<th>Phrase Model 1</th>
<th>Phrase Model 1</th>
<th>Phrase Model 1(ii)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I—ii-V</td>
<td></td>
<td>I—(ii-V)/II—I—(ii-V)/I I—II—II</td>
<td>A</td>
</tr>
</tbody>
</table>

BRIDGE

A Detailed Analysis of the Original Version

The melodic content of “It Never Entered My Mind” is predominantly diatonic. The melody begins on a^1 – a melodic headtone – and descends to e^1 in m. 4. The distribution of four-measure segments accounts for the tune’s relatively predictable phrasing. Furthermore, we may partition the melody into symmetrically organized two-measure units. Figure 4.2 shows the basic building block of the melody, a melodic pattern <a^1-g^1-f^1-e^1>.

Figure 4.2

It Never Entered My Mind - (mm.1-2)
The same intervallic span repeats in mm. 3-4 but on a different pitch level, $<f^1-c^1>$. Measures 4-5 restate the content of the previous two measures. In m. 7 the melody introduces a new motivic idea that ascends to 3, then rests on 2. This ascending gesture in m. 7 (and later in m. 15 and m. 33) functions as a leitmotif, and corresponds to the lyrics “it never entered my mind.” The contrast between descending and ascending figures in the A section not only conveys the meaning of the lyrics, but establishes a distinctive melodic pattern for the large-scale melodic organization of the song that is often associated with Phrase Model 1. A melodic reduction of the A section is shown in Figure 4.3.

Figure 4.3

It Never Entered My Mind - Melodic Reduction (mm.1-8)

A stepwise descent between structural 3 in m. 1 and 2 in m. 8 is harmonically supported by the I-V7 large-scale progression. Incidentally, a $^3-^2$ motion between the structural tones constitutes a background melodic pattern. In general, the melody of the first A section features a relatively small intervallic span of a major 6th, an explicitly diatonic content, and tetrachordal motivic construction.

The second A section is analogous to the first with the exception of the last two measures. Figure 4.4 demonstrates the expansion of the melodic range up to 5, thus signaling the arrival of the bridge.
The melodic expansion in the second A up to c2 prepares the arrival of d2 at the beginning of the bridge. The melodic content of the B section includes larger intervals and a higher tessitura. Figure 4.5 indicates the melodic structure of the bridge.

The bridge begins with the largest melodic interval of the tune, <d2-f1>, which is gradually filled in during the rest of the section; in effect, the opening d2 is resolved to the c2 at the end of the bridge. The arpeggiation of the tonic triad starts in m. 19. The melodic space between \textdegree3 and \textdegree5 is filled with either passing or neighbor tones. An escape figure: <d2-e2> in mm. 22-23 decorates \textdegree5.

The last section (mm.25-34) features a two-measure phrase expansion. A dramatic leap from c1 to c2 initiates the phrase extension and thwarts the predictability of the descending motive. The melodic reduction of the final section is given in Figure 4.6.
The rhythmic organization of the melody draws on a few simple ideas illustrated in Figure 4.7.

Set in 4/4 meter, the melody begins with four quarter notes as shown in Figure 4.7.a. Next, two rhythmic motivic segments project typical jazz characteristics. The first (occurring in mm. 2, 3, 5, and 7) is distinguished by a dotted rhythm, and resembles swung 8th notes. Figure 4.7.b demonstrates the rhythmic content of these measures. Second rhythmic segment, illustrated in Figure 4.7.c, employs an eighth-note anticipation of the second beat – a stock figure common in countless ragtime, novelty, and stomp pieces. The presence of these rhythmic ideas establishes the character of the A sections. In the B section, however, the use of longer note values changes the overall mood of the tune. At the beginning of the bridge, half notes alternate with quarter notes. Then, in m. 21, as the climax of the tune approaches, a characteristic rhythmic pattern shown in Figure 4.8 invigorates the musical texture.
The original harmonic changes are diatonic; they reflect the character of the melody, and support the nature of the lyrics. The tonic is locally prolonged in the first six measures of the tune, the expansion of the tonic consisting of an arpeggiated motion to iii. The use of iii does not affect the background structure of the phrase and is thus considered a surface elaboration of Phrase Model 1. A motion from I to V, which characterizes Phrase Model 1, governs the large-scale harmonic design of mm. 1-8 and mm. 9-16. Figure 4.9 provides a harmonic reduction of mm. 1-16 of the tune.

The bridge section continues to prolong the tonic in a mostly diatonic fashion. An approach to the climax is accompanied by the rather trivial lyrics “And now I even have to
scratch my back by myself,” as well as the application (for the first time) of a chromatic chord in m. 22. Bø7 does not only offer a long-awaited departure from the confines of the diatonic harmony, but also functions as tonicization of V in m. 23. The presence of V in m. 24 suspends the tonal motion and signals the formal interruption.\footnote{The formal organization of most standards in the AABA design falls within a binary structure (see Chapter 2).} The use of two characteristic formations in the bridge, F6 and Bø7, is typical for the harmonic syntax of the standard tune repertory. Figure 4.10 shows a harmonic reduction of the bridge.

\textit{It Never Entered My Mind - Harmonic Reduction (mm.17-24)}

Comparison of the A sections and the bridge indicates dissimilarities at the surface level. In spite of the apparent differences such as the quality of the opening chord, F6/A, or their overall harmonic structure, the background progression of the bridge corresponds to Phrase Model 1.

As has been pointed out, the final A section is based on Phrase Model 1 with a harmonic departure on ii. The use of iiø-V of ii in m. 30 prompts this harmonic departure. Figure 4.11 shows the structure of the progression in mm. 25-34.
“It Never Entered My Mind,” like the majority of standard tunes in the AABA form, is an example of the interrupted form with a large-scale I-V harmonic motion controlling mm. 1-24, and I-I governing mm. 25-34. As a consequence, the fundamental melodic descent $^3-^2-^1$ spanning the tune yields a more appropriate representation of the binary formal division, $^3-^2||^3-^2-^1$ with 2 at the end of the first reprise being substituted for 5.

Perhaps, because the overall harmonic design of the original version of “It Never Entered My Mind,” an almost pristine diatonicism, is not typical of most standard tunes, Jarrett’s rendition transforms its structure into a more complex harmonic setting that agrees with the idiosyncratic vocabulary of jazz syntax, and corresponds to the monotonous prototype with a characteristic motion to IV in the bridge. As will be demonstrated, Jarrett’s transformation of the tune shows recursive behavior and surpasses surface embellishments of chordal formations and local substitutions of selected progressions. By citing the recursive aspect of Jarrett’s performance, I mean his ability to change the harmonic structure of the tune yet preserve its rules of voice leading.
Jarrett’s Transformation of “It Never Entered My Mind”

Jarrett’s rendition of the tune juxtaposes the diatonic scheme of the melody with a subtle chromaticism that permeates the surface of the musical texture. His ability to incorporate new harmonic progressions without disrupting the original flow of the melody stands out not only in this performance but characterizes his overall approach to interpreting standard tunes, most notably ballads. Example 4.1 presents my transcription of “It Never Entered My Mind,” along with Gary Peacock’s bass line.

Example 4.1
The harmonic surface of Jarrett’s performance consists of extended chordal formations, disguised ii-V progressions over a C pedal point, and a number of cycle-of-fifths progressions effectively enriching the tune’s middleground. The inner voices move mostly by step and contain both primary and secondary extensions. One of the most significant expansions of traditional harmony is his use of Fma7(#5)/C in m. 2 and, later, in m. 10. In the original version, the melodic e1 is supported by an A minor triad. Interestingly, Jarrett’s choice emphasizes the most unstable formation from the MNC, the Lydian Augmented. Whereas in m. 2 and m. 10, ^\#5 can be analyzed as a member of a chromatic expansion from ^\#5 to ^\#6 and ^\#6 to ^\#5, respectively, its comparatively long duration confirms ^\#5’s independent status, and, therefore, validates the substitution of Fma7 with Fma7(#5). The inclusion of c\#1 as the ^\#5 of the Fma7 anticipates its emergence in m. 6 within a more familiar context, as the 3rd of A7(#5). The use of A7(#5) is derived from the rDNC, the Mixolydian b13. The application of a cycle-of-fifths progression corresponds with the resolution of the pedal point in m. 6. Jarrett transforms the original F-Am-Gm7-Eb7-C7 progression in mm. 6-8, into a more contrapuntally oriented A7-Dsus7-Gsus7-G7-Csus7-C7. Figure 4.12 compares voice-leading reductions of both Jarrett’s and the original versions for mm. 1-8.
Comparison of the two graphs from Figure 4.12 reveals a number of similarities at the deep-middleground level. Jarrett’s version relies on Phrase Model 1 (as did the original) and preserves the behavior of the essential jazz counterpoint. His treatment of Phrase Model 1, however, is more intricate, imbued with interesting harmonic and contrapuntal choices. The inner counterpoint 5-#5-6 supporting the melody, for instance, enhances the presentation of the tonic and creates a striking dissonance with the bass note, C. The final ii-V cadence is preceded by II7 whose 3rd becomes a member of a 5-#4-4 descent; this descent constitutes a mirror
The use of a cycle of fifths in mm. 6-8, 14-15, 23-24, and 32-33 radically transforms the original I-iii-ii\(^7\)-V\(^7\) local progression. Jarrett’s treatment of the cycle of fifths is highly contrapuntal. While preserving the behavior of the essential jazz counterpoint, his use of suspensions, neighbor tones, and passing tones enhances the overall presentation of the progression. Figure 4.13 compares the structure of the sequence from mm. 6-8, 14-15, 23-24, and 32-33.

Figure 4.13

Comparison: III-VI-II-V-I

![Comparison: III-VI-II-V-I](image-url)
With each occurrence of the progression, Jarrett’s counterpoint becomes more active and the addition of both primary and secondary extensions thickens the harmonic texture. In Figure 4.13.a, the pitch g is sustained in the tenor voice and becomes the 4th (or 11th) of D\(^7\). The G\(^7(9)\) on beat 4 (m. 7) is contrapuntally prepared by Gm\(^{11}\) and Gsus\(^{11}\), respectively, with inner voices moving by step. The cycle-of-fifths progression shown in Figure 4.13.b, indicates a more vertical approach to harmony. The left hand structures employ emblematic jazz formations for A\(^7\text{alt}\), Dsus\(^9\), and Gm\(^9\) sonorities. The two upper voices in the left hand (m. 15), ascend by step to a \(<c^1, e^1>\) dyad, which are the 11th and the 13th of Gsus\(^7\), respectively. The cycle of fifths in Figure 4.13.c coincides with the melodic climax; in order to support its structure, Jarrett uses the following verticalities, Am\(^9\), D\(^7(\text{b13,b9})\), Gm\(^{11}\), and Csus\(^{13}\), respectively. Figure 4.13.d presents the most elaborated version of the A\(^7\)-D\(^7\)-G\(^7\)-C\(^7\) progression so far. Suspended chords precede both A\(^7(13)\) and D\(^7(13)\). A brief examination of Figures 4.13 demonstrates that Jarrett not only often employs the cycle-of-fifth progression as an effective contrapuntal technique of prolonging the tonic, but also modifies the progression’s overall structure. The end of the second A section anticipates the arrival of the bridge via an extended fifths progression as shown in Figure 4.14.
Jarrett’s harmonic transformation of the bridge offers a substantial departure from the original changes and consequently from the original Phrase Model 1. Since m. 16 tonicizes of IV, thus effectively altering the original harmony, the bridge in Jarrett’s rendition is based on Phrase Model 3 with a harmonic departure on iii. The choice of IV (m. 17) triggers a descending fourth progression to I. The presentation of the tonic in m. 19, however, is disguised by the pedal point C and the F\(^{#1}\)\(\text{ma7, b13}\) structure in the left hand. This particular sonority, derived from the mNC (Harmonic #11), is a chromatic expansion of the tonic in pitch space. Note that the melodic g\(^1\) functions as an upper diatonic neighbor to f\(^6\) and constitutes the 9\(^{\text{th}}\) of the Fma\(^7\), and that the pitches g\(^#\) and c\(^#1\) function as chromatic neighbors of a and c\(^1\), respectively. The melodic ascent from a\(^1\) up to e\(^2\) features further transformations of the original changes, the most noteworthy of which is the chromatic ii-V on #4 embedded in place of a B\(^b7\) chord. By utilizing this progression, Jarrett introduces a brief harmonic departure on iii, hinders the original motion to V, and saves the occurrence of V until the end of the bridge. Note that the chromatic ii-V initiates the harmonic departure and the mediant key area elides with the cycle-of-fifths progression ending the bridge. A harmonic reduction of the bridge is given in Figure 4.15.

Figure 4.14

It Never Entered My Mind - Jarrett's Version (mm.8-16)
In mm. 1-24, Jarrett mostly relies on the original melody. In the last A section, Jarrett takes liberties while rendering the melody. Not only does he vary the melodic content rhythmically (as he did in mm. 1-24), but he also transforms its basic framework. The original repeated notes in m. 25 are embellished by upper neighbors. The descent from $^\wedge$1 to $^\wedge$5 in mm. 27-28 of Jarrett’s rendition features an octave transfer up to g^2 followed by a descending motion to c^2. Measures 30-34 paraphrase the original tune. Particularly effective is a caesura of motion on g^1 at the end of m. 33, followed by a melodic flourish (m. 34) launching the solo section.

Although Jarrett’s use of chordal voicings is a result of his masterful handling of counterpoint, it is possible to analyze chords as individual entities, describe their intervallic properties, and determine their membership within specific nexus collections. Example 4.2 examines chordal verticalities used by Jarrett within “It Never Entered My Mind.”
Example 4.2
Hexamodal Analysis

NEXUS COLLECTION:
MNC MNC sDNC MNC

HEXAMODE: Ionian Ionian Mixolydian Lydian #5

NC: MNC sDNC MNC sDNC
H: Ionian Mixolydian Ionian Mixolydian
NC: Dorian Mixolydian Mixolydian Mixolydian

H: Ionian Mixolydian Lydian #5

NC: MNC sDNC MNC sDNC

H: Ionian Mixolydian Ionian Mixolydian
Table 4.1 provides statistical summary of specific nexus collections with their corresponding hexamodes.
Table 4.1

It Never Entered My Mind – Statistical Analysis

<table>
<thead>
<tr>
<th>Nexus Collection</th>
<th>Hexamode</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Nexus Collection MNC</td>
<td>Ionian</td>
<td>17</td>
<td>89%</td>
</tr>
<tr>
<td></td>
<td>Lydian #5</td>
<td>2</td>
<td>11%</td>
</tr>
<tr>
<td>Minor Nexus Collection MNC</td>
<td>Dorian</td>
<td>1</td>
<td>9%</td>
</tr>
<tr>
<td></td>
<td>Aeolian</td>
<td>9</td>
<td>82%</td>
</tr>
<tr>
<td></td>
<td>Harmonic #5</td>
<td>1</td>
<td>9%</td>
</tr>
<tr>
<td>Regular Dominant Nexus Collection</td>
<td>Mixolydian</td>
<td>5</td>
<td>33%</td>
</tr>
<tr>
<td>rdNC</td>
<td>Altered b9</td>
<td>3</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Altered #9</td>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Mixolydian b9</td>
<td>2</td>
<td>13%</td>
</tr>
<tr>
<td></td>
<td>Mixolydian b13</td>
<td>3</td>
<td>20%</td>
</tr>
<tr>
<td></td>
<td>Altered b9/#9</td>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td>Suspended Dominant Nexus Collection</td>
<td>Mixolydian</td>
<td>24</td>
<td>100%</td>
</tr>
<tr>
<td>sdNC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intermediate Nexus Collection INC</td>
<td>Locrian #2</td>
<td>2</td>
<td>100%</td>
</tr>
</tbody>
</table>
The examination of the statistical data reveals that the harmonic vocabulary is essentially diatonic, in keeping with the tune. The use of the Ionian hexamode yields 89% of all major-type voicings; minor types are controlled by two diatonic hexamodes: Dorian and Aeolian, yielding 91%. The use of dominant chords, both regular and suspended, favors diatonic choices: while in the rDNC the Mixolydian hexamode leads with 33% among seven distinct hexamodes, the diatonic uniformity of the sDNC is governed by the suspended Mixolydian with 100%.

Jarrett’s harmonic and melodic transformation of the original song does not disrupt the original flow of the melody. The choice of his harmonic vocabulary, it seems, is always in the service of effective melody. Most of Jarrett’s transformations employ local embellishments of structural chords and inserted cycle-of-fifths progressions. The tonicization of IV in the bridge, however, offers a significant modification of the overall structure of the tune. Jarrett’s reharmonization of the bridge transforms “It Never Entered My Mind” into one of the most common jazz prototypes, as is shown in Figure 4.16.

Figure 4.16

Jarrett’s Prototype: It Never Entered My Mind

Phrase Model 1 Phrase Model 1 Phrase model 3(iii) Phrase Model 1(ii)

I–ii-V|I–(ii-V)/IV|IV–(ii-V)/ii-V|I

A A B A+2mm.ext

Figure 4.17 illustrates a complete voice-leading reduction of the original and Jarrett’s versions.
Figure 4.17

It Never Entered My Mind - Harmonic Reduction - Comparison

Original Version (mm.1-16)

Jarrett's Version (mm.1-16)
Original Version (mm.25-34)

Jarrett's Version (mm.25-34)
The behavior of the essential jazz counterpoint in the bridge is worthy of closer scrutiny. In the original version, the melodic ascent \(<a^1-b^1-c^2-d^2>\), is contrapuntally supported by a series of unprepared 7-6 suspensions. Jarrett interprets the 7-6 suspensions of the original version as chordal 7ths (excepting the F/A chord in m. 22 which can be analyzed as an A minor formation with a 6-5 suspension).

“Stella By Starlight”

Preliminary Observations

Written by Victor Young for the movie “The Uninvited,” “Stella By Starlight” has become a favorite standard tune in jazz. Its popularity among jazz musicians is indisputable and almost all of the great jazz artists of the 50s and beyond recorded it at some point of their career. Its formal construction and individual traits caught the attention of music theorists who exchanged their opinions about various aspects of the tune in a recent issue of Annual Review of Jazz Studies. Cynthia Folio, for instance, posits that the surface of the tune “has much in common with other standard tunes, such as its canonical 32-bar structure, harmonic progressions through cycles of fifths, linear melodic motion, repetitive rhythmic ideas, and the use of sequence.” She goes on to identify tonal underpinnings of “the DO-TI motive” and its subsequent role is Stan Getz’s improvisation. Allen Forte compares the two versions of “Stella By Starlight,” the real “Stella” and the “real” “Stella.” In his insightful analysis Forte points out that the use of Em in place of the original B♭, triggers “the progression by bass fifth toward the goal subdominant triad,” thus significantly altering the intent of the composer. He asserts that as a consequence of “this very harmonic process [the use Real Book changes], with its emphasis on progression by fifth, the tentative and mysterious effect of the original is considerably weakened. In short, The Real Book progression is far more determinate, far more directed than the progression in the music of the “real” “Stella.”

In my analysis, I would like to expand on Forte’s discussion and argue that “Stella’s” unusual design has not only influenced jazz changes, but has also affected a number of other

85 “Stella By Starlight” was written in 1944. The movie was released in 1946. In the movie’s soundtrack, “Stella By Starlight” is played in the keys of D major and B major with a distinct chord progression comparatively different from both, the “original” and the “jazz” versions. As a side note, the “original” version was published in a fake book from the 50’s (of an uncertain origins) in the key of G major.
89 Ibid., p. 95.
90 Ibid., p. 95.
harmonic choices preferred by jazz artists.91 As Folio rightly observes, the surface components of “Stella” reflect those of other tunes in 32-bar form. The uniqueness of “Stella,” it may be argued, stems from the dichotomy between its melodic and harmonic content. Although the two are dependent of one another, they seem to unfold on two separate planes. On the one hand, the melody exhibits characteristics typical of a through-composed form. This is quite unusual for standard tunes. On the other hand, the harmonic phrase structure determines the tune’s form and reveals striking resemblances to the standard part forms in the use of specific phrase models. Consequently, I would posit that the harmonic structure of “Stella By Starlight” is loosely based on a modified off-tonic AABA prototype with each A section corresponding to a complete or incomplete Phrase Model 13, the bridge to an incomplete Phrase Model 5. This notion is not as revolutionary as it may at first seem: other standards tunes, such as “I Love You,” by Cole Porter and “All The Things You Are,” by Oscar Hammerstein II and Jerome Kern are based on the same prototypical model.92 What makes “Stella” stand out among standard tunes is its freely unfolding melody, an entity in and of itself, transcending the boundaries of the phrase structure.

Analysis of Original and Jazz Versions

Example 4.3 includes two types of chord changes in the key of Bb, original and jazz (for the lead-sheet version consult *Real Book 1*, p. 408).93

91 As will be demonstrated in the following chapter, the original opening of “Stella By Starlight,” $B^b_{\text{bo7}}F^7$, may have influenced Jarrett’s unusual choice for the pedal point at the end of his solo introduction.

92 In these tunes the second A section differs considerably from the first A section. In “I Love You,” for instance, the second A section is based on Phrase Model 2 with a harmonic departure on III (as opposed to Phrase Model 2 without harmonic departure for the first A section).

93 For the purpose of this analysis I will use the “original” changes as they occur in a fake book (supposedly provided by the composer) and the “jazz” changes readily available in countless jazz fake books.
The melody of “Stella By Starlight” is characterized by a relatively static rhythmic design and the inclusion of non-harmonic tones as essential melodic components. Suspended notes over the barlines – mostly primary or secondary extensions – create tension with the underlying harmonies. Thus, the pitch a_1 at the beginning constitutes the major 7th of the original B^b_0 or the 11th of Em^7 of the jazz version, while in m. 5, the same harmonic change in the original and jazz versions, F minor, supports the pitch g_1, the major 9th. These dissonances usually underscore important words of the lyrics, lending them a particular poignancy. The climax of the tune, occurring in the bridge, corresponds to the lyrics “That great symphonic theme;” at that point, the melodic e^{b2} becomes the b^{13} of G^7, and f^2 the 11th of Cm^{11}. Measures 20-23 continue to
emphasize non-harmonic tones within the melody. Upon reaching \(\hat{5} \) in m. 19, the melody features a stepwise descent to \(\hat{7} \) in m. 25. This diatonic span, however, receives unorthodox harmonic treatment. In m. 21, \(\hat{3} \) is the major 7\(^\text{th} \) of \(\text{Eb} \mbox{m}\7 \) in the original version, or the \(\#11 \) of \(\text{Ab}\7 \) in the jazz version, and in m. 23, \(\hat{2} \) is supported as the 9\(^\text{th} \) of \(\text{Bb}\mbox{m}\7 \) in both versions.

The mostly stepwise motion within the melody is balanced by two downward leaps at the end of m. 2 and m. 6. A melodic reduction of “Stella By Starlight” is shown in Figure 4.18.

Figure 4.18

Stella by Starlight - Melodic Reduction

At first glance, comparison of the original and jazz changes seems to reveal significant differences between the two. Upon closer examination, however, the jazz changes can be seen as a middleground elaboration of the original progression. Nowhere is the relationship between the background and middleground more evident than in mm. 1-8. The opening progression of the original version, \(\text{B}^{b0} -\text{F}\7 \), stands out for its stylistic uniqueness and an ominous effect perfectly suited to a ghost story. Its relationship to the jazz changes \(\text{Em}\7(b5) -\text{A}\7 -\text{Cm}\7 -\text{F}\7 \) can be classified through common tones relationship between \(\text{Em}\7(b5) \) and \(\text{A}\7 \), and \(\text{B}^{b0} \); members of the \(\text{B}^{b0} \) triad are embedded within the structure of \(\text{A}\7(b9) \). Since it is common in the jazz idiom to precede V with its ii (provided that melodic notes agree with the harmony), the use of a \(\text{Em}\7(b9) -\text{A}\7(b9) \) progression is a well-considered choice for the original \(\text{B}^{b0} \). However, the original \(\text{B}^{b0} \), functioning as vii\(^7\)/V, prepares the arrival of \(\text{F}\7 \) better than the \(\text{A}\7 \), which only relates back to the \(\text{Em}\7(b5) \) chord. Similarly, the space occupied by \(\text{F}\7 \) in the original version is expanded by an embedded ii\(^7\)-V\(^7 \) progression. The practice of preceding a dominant chord with its predominant ii is the first lesson in jazz reharmonization. Hierarchically, \(\text{B}^{b0} \) is inferior to \(\text{F}\7 \), since the former, due to its unstable quality, can be heard as a contrapuntal elaboration of the more stable \(\text{F}\7 \). Another possible relationship between these two chords – \(\text{B}^{b0} \) interpreted as a rootless C\7(b9) chord – will be explored by Jarrett at the close of his extended solo introduction.\(^\text{94}\)

The evolution of jazz harmonic syntax from the popular song vocabulary cannot be more evident than in the treatment of IV-V or IV-I cadential progressions. These are typical of Common-Practice tonality, and the language of popular tunes draws extensively on this practice.

\(^\text{94} \) This reinterpretation will be discussed at length in the next chapter.
In “Stella By Starlight” there are a number of instances pointing to this practice. Measures 15-16, for instance, tonicize G7 in m. 17. The original version employs a local iv-V of G. In the jazz version, however, the focus is placed on the cycle-of-fifths progression; hence ii substitutes iv. A similar scenario occurs in mm. 27-30 where local iv-V progressions in the original are changed to ii-V in the jazz version. Measures 21-24 in the original are governed by a iv-I harmonic motion. A relatively weak position of the plagal motion (further emphasized by a minor predominant) is substituted by a more idiomatic bVII in m. 21. The use of bVII is consistent with the jazz idiomatic practice and anticipates the arrival of the tonic more forcefully. Again, the use of jazz substitution stems from the original change; Ebm may be interpreted as a “ii,” necessarily bringing its “V”, Ab.

Due to its uncommon design, the formal structure of “Stella By Starlight” has been classified as an example of ABCA’ form. J. Kent Williams writes that “[i]ts melodic design at the section, or period, level is ABCA’ instead of more typical AABA or ABAC pattern found in the great majority of American popular ballads. Its C period, which corresponds to the B period, or bridge, of an AABA tune, ends on the tonic chord instead of preparing for a return to that chord.” Williams’ observations hold partially true while referring to the melodic structure of the tune. There are melodic features of Williams’s “B” that make it a variant of A. However, by looking only at the melodic structure of the tune without examining other issues, such as its tonal structure and overall phrase organization, the analytical outcome turns out to be inadequate. The through-composed character of mm. 1-24 is manifested by A, B, and C; A’ reflects a return to the opening motive. Unlike the melodic architecture, however, “Stella’s” harmonic design displays a number of similarities with that of a modified off-tonic AABA prototype. The harmonic progressions controlling mm. 1-8 and mm. 8-16 in the jazz version show the use of Phrase Model 13. The chief characteristic of the model is the use of 7IV progression either at the beginning of a tune (off-tonic beginning) or immediately following the tonic. A voice-leading reduction of mm. 1-8 of the lead-sheet version is given in Figure 4.19.

96 Consult Miles Davis’ version of “I Thought About You,” The Complete Concert 1964, My Funny Valentine & Four and More, and the lead sheet of “Yours Is My Heart Alone,” The Standards Real Book, (Sher Music Co., 2000), p. 561, for the examples of the off-tonic prototype; and “I’m Getting Sentimental Over You” for the example of a tune using 7IV progression following the opening tonic.
The background structure of the first A section features the backward projection of the tonic triad. It is based on an incomplete Phrase Model 13 with harmonic departure on IV constituting the termination of the phrase. Its incomplete character is manifested by the lack of motion to the tonic or dominant at the end of the phrase. The presence of the tonic in m. 9 completes its backward projection and initiates another incomplete Phrase Model 13 with a harmonic departure on V in m. 13. The tonic chord is prolonged for the next three measures with D minor in m. 11 being its expansion, before changing its harmonic function to IV of a new local tonic, F. The harmonic characteristics of mm. 13-16 are so distinct and idiosyncratic for jazz syntax that they can be classified as an incomplete Phrase Model 7. The rationale behind this assertion stems from the important harmonic changes permeating this segment. Whereas in other tunes harmonic departure depicts a motion to a new key area, the use of a new phrase model as a sub-category of Phrase Model 13 in “Stella By Starlight” indicates the harmonic complexity of mm. 9-16.
As Williams points out, the bridge of the tune, just as in a typical AABA form, occurs in mm. 17-24. One of the most apparent characteristics of the bridge is its slower harmonic rhythm; only four chords control its structure. The opening chord, G7 begins a quasi cycle-of-fifths progression, G7-Cm7-A$^b^7$-B$^b^ma^7$. The use of A$^b^7$ in place of the diatonic dominant 7th is a common substitution for the V-I cadence and its origins stem from the equal division of the octave by minor thirds. Figure 4.20 explains the derivation of the $bVII$-I progression.

bVII-I Progression

![bVII-I Progression Diagram]
The harmonic design of the bridge, in my classification of phrase models, corresponds to an incomplete Phrase Model 5. What seems to be at odds with a typical AABA type tune is the conclusion of the bridge in the tonic. This unusual placement of the tonic defies the precepts of the interrupted form which emphasizes motion to the dominant at the end of the first branch of interruption.

The last A section presents a complete Phrase Model 13 with an off-tonic beginning and a predictable cadence in the tonic. Figure 4.21 illustrates the distribution of phrase models in an outline format.

Figure 4.21

Prototype: Stella By Starlight

Inc. Phrase Model 13 Inc. Phrase Model 13(V) Phrase model 5 Phrase Model 13
Inc. Phrase Model 7

A voice-leading reduction of both versions of “Stella By Starlight” is shown in Figure 4.22.
Figure 4.22

Stella By Starlight - "Original" and "Lead-Sheet" Versions: Voice-Leading Reductions

Original Version (mm.1-8)

Lead-Sheet Version (mm.1-8)

Incomplete Phrase Model 13
Original Version (mm.17-24)

 miesiące 17

\(^4 \) \(^3 \) \(^1 \) \(\text{m.24} \)

Lead-Sheet Version (mm.17-24)

Phrase Model 5

\(^4 \) \(^3 \) \(^2 \) \(^1 \) \(\text{m.24} \)

\(\text{VI}^7 \) \(\text{ii}^7 \) \(\text{iii} \) \(\text{I} \)

\(\text{VI}^7 \) \(\text{ii}^7 \) \(b\text{VII}^b7 \) \(\text{I} \)
Original Version (mm.25-32)

Lead-Sheet Version (mm.25-32)
Comparison of the original and the jazz versions reveals some voice leading problems on the part of the former. For instance, in the second A section (mm. 9-16), a progression from B^b-Cm-D^7 features parallel octaves between outer voices. In the jazz version this problem is solved by supporting 6 with a local $vii^{\flat}7$, then including a local $ii^{\flat}7-V7$ preparation of VI.

In sum, the intricate melodic design and convoluted harmonic underlay of “Stella By Starlight” matched its original purpose—a background music for a ghost story movie. Despite its primary intent, “Stella’s” place within the repertory of standard tunes has been well secured. Analytically, however, the tune presents a number of problems preventing a clean-cut analytical reading. These theoretical ambiguities make “Stella By Starlight” an attractive subject for music theorists.

Jarrett’s Transformation of “Stella By Starlight”

Jarrett’s transformation of “Stella By Starlight” (shown in Example 4.4), unlike his rendition of “It Never Entered My Mind,” illustrates an almost complete reliance on the jazz version of the tune and similarities in harmonic choices to the Miles Davis’s performance from 1964.97

97 As recorded on *My Funny Valentine & Four and More* (Columbia, 1964).
Example 4.4

Transcribed by Dariusz Terefenko
As recorded by Keith Jarrett on "Standards Live," ECM 1317, 1985
Jarrett modifies chordal formations by freely incorporating secondary extensions and altering chord qualities; these modifications constitute surface elaborations and do not affect the tune’s background. It is worth noting that this performance follows an extensive solo introduction that features an impressive re-composition of the tune. Consequently, Jarrett states the melody without any substantial departures from its original content. Example 4.5 compares four sets of changes: 1) from the movie’s soundtrack, 2) the “original” from a fake book, 3) jazz, and 4) Jarrett’s.

98 A complete analysis of the introduction is provided in Chapter 5.
Example 4.5

Changes Comparison

\[
\begin{align*}
\text{Movie Soundtrack} & \quad B^b & \quad B^{b7}(A^6/B^b) & \quad 13 - b13 - 5 & \quad F7 \\
\text{Original} & \quad & B^{b9} & \quad F7 \\
\text{Jazz Changes} & \quad & \text{Em}^{7(b5)} & \quad A^7 & \quad Cm^7 & \quad F7 \\
\text{Jarrett's Changes} & \quad & \text{Em}^{11(b5)} & \quad A^{7(13)} & \quad Cm^{11} & \quad F7^{13(b9)} \\
\end{align*}
\]

(1) \quad B^{b\text{sus7}} & \quad B^{b7(b9)} & \quad E^{b\text{add2}/B^b} & \quad A^{b9} \\
(2) \quad Fm^7 & \quad B^{b7} & \quad E^b & \quad A^{b7} \\
(3) \quad Fm^7 & \quad B^{b7} & \quad E^{b\text{ma7}} & \quad A^{b7} \\
(4) \quad Fm^9 & \quad B^{b7(13)} & \quad E^{b\text{ma7}} & \quad E^{b\text{ma7}} \\

(1) \quad B^b/F & \quad Gm^6/(E) & \quad Dm & \quad D^{b7(b5)} \\
(2) \quad B^b & \quad Gm & \quad Dm^7 & \quad B^{b\text{m}} \\
(3) \quad B^{b\text{ma7}} & \quad \text{Em}^{7(b5)} & \quad A^7 & \quad Dm^7 & \quad B^{b\text{m7}} & \quad E^{b7} \\
(4) \quad B^{b\text{ma7}} & \quad \text{Em}^{7(b5)} & \quad A^7 & \quad Dm^{ma9} & \quad B^{b\text{m7}} \\

(1) \quad F/C & \quad B^{b9} & \quad A^{m9(b5)} \\
(2) \quad F & \quad B^{b9} & \quad Cm & \quad D^7 \\
(3) \quad F^{ma7} & \quad \text{Em}^{7(b5)} & \quad A^7 & \quad A^{m7(b5)} & \quad D^7 \\
(4) \quad A^{7(13)} & \quad D^7 & \quad Gm^9 & \quad C^{13} & \quad A^{m7(b5)} & \quad D^{13(b9)}
Jarrett’s left hand structures, in spite of their fluctuating complexity, include the guide tones of the corresponding chords. The presence of the essential jazz counterpoint guarantees a smooth unfolding of the progression. Jarrett often transforms the structure of a chord by
borrowing its content from a corresponding nexus collection. Nowhere is this technique more evident than in his treatment of dominant 7th and minor chords.

The structure of the dominant 7th features an impressive array of formations derived exclusively from the DNC: the Mixolydian (mm. 10, 14, 24, and 30); the Mixolydian b13 (m. 17 and m. 26); the Altered b9 (mm. 2, 6, 13, 16, 18, and 28); and the Altered #9 (m. 27). Jarrett’s handling of minor chords draws on the mNC and the INC; such minor chords include the Dorian (m. 3 and m. 25), the Lydian (m. 4 and m. 19), the melodic minor (mm. 8, 11, and 29), and the Locrian #2 (mm. 10, 15, and 25). Jarrett’s noteworthy alterations of the quality of the minor 7(b5) occur in mm. 25-32. Here, Jarrett transforms its quality into Em7, D7alt, and Ebm(7a7), (m. 25, 27, and 29, respectively). The last harmonic change, Ebm(7a7), adheres to the original version.

Example 4.6 offers an analysis of Jarrett’s harmonic language and its classification according to the Hexamodal System.
Example 4.6

NEXUS COLLECTION: INCl rDNC mNC mMC
HEXAMODE: Locrian #2 Altered b9 Dorian (+1) Dorian

NC: rDNC mNC
H. Altered b9 Aeolian

NC: rDNC MNC
H. Altered b9 Ionian
Table 4.2 provides a statistical account of Jarrett’s penchant for specific collections and types of harmonic verticalities.

Table 4.2
Stella by Starlight – Statistical Analysis

<table>
<thead>
<tr>
<th>Nexus Collection</th>
<th>Hexamode</th>
<th>Total</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major Nexus Collection MNC</td>
<td>Ionian</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>Minor Nexus Collection mNC</td>
<td>Dorian</td>
<td>2</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Aeolian</td>
<td>6</td>
<td>43%</td>
</tr>
<tr>
<td></td>
<td>Melodic</td>
<td>2</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Lydian #7</td>
<td>4</td>
<td>29%</td>
</tr>
<tr>
<td>Regular Dominant Nexus Collection rDNC</td>
<td>Mixolydian</td>
<td>3</td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td>Altered b9</td>
<td>7</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Altered #9</td>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td></td>
<td>Mixolydian b9</td>
<td>2</td>
<td>14%</td>
</tr>
<tr>
<td></td>
<td>Mixolydian b13</td>
<td>1</td>
<td>7%</td>
</tr>
<tr>
<td>Suspended Dominant Nexus Collection sDNC</td>
<td>Mixolydian b9</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td></td>
<td>Mixolydian b13</td>
<td>1</td>
<td>50%</td>
</tr>
<tr>
<td>Intermediate Nexus Collection INC</td>
<td>Locrian #2</td>
<td>4</td>
<td>100%</td>
</tr>
</tbody>
</table>
What seems to be particularly interesting, is his unified treatment of major chords represented by MNC, and half-diminished chords signified by the Intermediate Nexus Collection. In both cases, Jarrett depends exclusively on a single hexamode, Ionian and Locrian 2, respectively. His treatment of minor chords displays more variety and a proclivity toward a more dissonant Lydian 7 collection. With 29% of the occurrences of minor structures, it occupies second place among four types of minor hexamodes. The richest family of chords, the dominant 7th, shows the Altered 9 collection clearly in the lead with 50% of occurrences among five different hexamodes.

Steve Lindeman, while comparing two versions of “Stella By Starlight” performed by Miles Davis and his two different rhythm sections, observes that “…Davis’s conception of the tune changed during this time [a period between 1958-1964], and reveals the equally fascinating perspective of how the two performing groups differed in their approach to the standard.” In Jarrett’s rendition there are two instances showing his preference for the version from 1964. First, mm. 13-16 duplicate the Davis’s harmonic treatment as opposed to the jazz changes. Figure 4.23 compares the two types of changes.

Figure 4.23

Stella By Starlight - Comparison of Changes

- **1958 Changes**: Fma7 → Em7(b5) → A7
- **1964 Changes**: A7(b13) → Dm7 → Gm9 → C13

99 Over the long run, it would be interesting to know whether these choices are consistent with general characteristics of the “Jarrett’s style.” A more thorough statistical account, however, requires the examination of a large amount of data before forming a satisfactory conclusion. Clearly, such a project is beyond the scope of the present study.

While the jazz changes for mm. 13-16, Fma\(^7\)-Em\(^{ø7}\)-A\(^7\)-Am\(^{ø7}\)-D\(^7\) were popularized by Davis in 1958 recording, A\(^5\)-D\(^7\)-Gm\(^7\)-C\(^7\)-Am\(^{ø7}\)-D\(^7\), as Lindeman points out, show the harmonic growth of the tune.\(^{101}\) The use of the G pedal point in mm. 18-20 illustrates the second instance where Jarrett’s harmonic choice corresponds to that of Davis’s (1964).

By now, jazz players have become accustomed to playing both harmonic versions. Comparison of Jarrett’s version and the jazz changes demonstrates that his familiarity with the original and recorded versions influenced, to some degree, his choice of harmonic language.

Conclusion

Jarrett’s performances of “It Never Entered My Mind” and “Stella By Starlight” exemplify his approach to playing standard tunes. It seems that the presentation of the melody over a well-structured harmonic basis is of utmost importance. The underlying harmonies result from the behavior of the essential jazz counterpoint. Since Jarrett’s voice leading features mostly stepwise motion, Peacock’s bass notes can depart from the prescribed changes and venture into more complicated territory. Their rendition of both tunes features a number of harmonic departures that could only be possible through Peacock’s reinterpretation of Jarrett’s counterpoint as the agent of different harmonic solutions. This, of course, requires a great harmonic sensitivity on the part of Peacock, who must immediately respond to what is being harmonically and/or contrapuntally implied. Measures 28-29 of “Stella By Starlight,” for instance, demonstrate Peacock’s keen harmonic sense. Jarrett’s voicing at the end of m. 28 suggests E\(^b\)(ma7); this chord gives Peacock a chance to use G\(^b\), thus reinterpreting Jarrett’s sonority in a less conventional way and preparing the arrival of the dominant in m. 30 in a more linear fashion.

The analysis of Jarrett’s transcriptions reveals that harmony, for the most part, depends upon counterpoint. Even when the texture seems homophonic, Jarrett is able to carry a single contrapuntal strand that not only balances a melody but also ties it together with a harmonic scheme. By relying on this approach, melodic dissonances that contradict the harmony become less apparent and function as a vital embellishment of the musical structure. Above all, Jarrett’s dedication to performing standard tunes is indicative of his veneration of the jazz tradition. The music created by the “Standards” trio elevates this repertory to new heights of creative achievement.

\(^{101}\) Ibid.
Chapter 5

Analysis of the Extended Solo Piano Introductions

Introduction

"A fantasia is said to be free when it is unmeasured and moves through more keys than is customary in other pieces, which are composed or improvised in meter. These latter [measured fantasias] require a comprehensive knowledge of composition, whereas the former [free fantasias] requires only a thorough understanding of harmony and acquaintance with a few rules of construction."\(^{102}\)

Jarrett’s solo introductions to jazz standards comprise a memorable aspect of his work with the “Standards” trio. Full of harmonic surprises and unexpected melodic turns, these lengthy beginnings exhibit an attractive formal design supported by a masterful handling of harmony and counterpoint. Indeed, C. P. E. Bach’s notions that “a fantasia [as it] moves through more keys…” and “[an unmeasured fantasia] requires only a thorough understanding of harmony and acquaintance with a few rules of construction” resonate nicely with the overall formal organization of Jarrett’s introductions to “Stella By Starlight,” “Come Rain Or Come Shine,” and numerous others. Comparison of their formal designs enables us to posit a general formal paradigm and thus improvise similar introductions to standard tunes. To test that paradigm, this chapter ends with a new introduction in a “Jarrett style” based on a standard tune by George and Ira Gershwin “Embraceable You” (which Jarrett has not recorded).

Although Bach’s observations relate on a general level to Jarrett’s introductions, there are differences between the level of dissonance that is acceptable in jazz and the more stringent restrictions of Common-Practice music. Insofar as jazz harmonic syntax includes an additional layer of tonal development, the uncritical application of “orthodox” tonal theoretical constraints is at odds with jazz practice. The acceptance of primary extensions as chord members of jazz formations and as building blocks of the essential jazz counterpoint, for instance, is normative in jazz and distinguishes it from classical tonal practice. By treating primary extensions as functional chord tones, the expansion of unstable sonorities becomes theoretically possible.

The map of tonality given in Chart 5.1 represents the historical evolution of tonal syntax. Each new category requires modification of the existing rules. Developments of the later 19th century – still to be documented in a completely satisfactory manner – prepared the way for jazz harmony. With the emergence of jazz, four-part harmonies become normative; therefore, the essential jazz counterpoint must include primary extensions.

"Stella By Starlight” – analysis

The solo introduction to “Stella By Starlight,” shown in Example 5.1, raises a number of intriguing questions: What is the role of the original material in shaping the design of the introduction proper? How do the phrase and harmonic structures of the original affect its layout? What compositional principles govern the organization of the intro? How does Jarrett’s familiarity with classical music (most notably with that of the Baroque period) influence its design? Analysis of the introduction begins to engage these issues critically.

Example 5.1

103 This chart is modeled after Matthew Brown’s similar chart distributed in his Schenker seminar.
Henry Martin posits “[i]nterpretation of an original melody in jazz performance may be taken to such extremes that the original is in effect recomposed by the improvisers.”\footnote{Henry Martin, “The Nature of Recomposition: Miles Davis and “Stella By Starlight,” \textit{Annual Review of Jazz Studies} 9 (1998), p. 77.} While he refers to the rendition of a “head,” a similar observation can be made with respect to Jarrett’s introductions. Jarrett not only recomposes the melodic and harmonic content, he goes on to decompose the formal structure of the tune, thus creating a new and compelling formal paradigm. For Jarrett, improvising solo introductions is an active process involving thematic, tonal, and formal techniques.

\textbf{Overview}

The formal structure of the introduction can be represented by a five-part formal scheme: exordium-presentation-departure-return-codetta model, loosely based on the structure of classical rhetoric.\footnote{See George A. Kennedy, \textit{A New History of Classical Rhetoric}, (Princeton: PUP, 1994).} Jarrett’s oratory style manifests itself not only through musical expressions but also – which have become indispensable components of his playing – through growls, singing, ecstatic exclamations, and unorthodox physical poses, all of which actively accompany his playing. These extra-musical elements add an additional dimension to Jarrett’s performances. A well-skilled “rhetorician,” Jarrett is capable of using rhetorical devises in a masterful way, fully engaging the audience and controlling its expectations through his musical discourse.

\textbf{Table 5.1}

\textbf{Formal Chart: Stella By Starlight (introduction)}

<table>
<thead>
<tr>
<th>Exordium</th>
<th>Presentation</th>
<th>Departure</th>
<th>Return</th>
<th>Codetta</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm. 1-3</td>
<td>mm. 4-19</td>
<td>mm. 20-42</td>
<td>mm. 43-47</td>
<td>mm. 48-51</td>
</tr>
</tbody>
</table>

Arrangement (Gk. \textit{taxis}; Lat. \textit{dispositio}) is the organization of the speech into parts, which, in a legal speech, are often composed of the following sections: 1) introduction (Gk. \textit{prooimion}, Lat. \textit{exordium}); 2) narration (Gk. \textit{diegesis}, Lat. \textit{narratio}; 3) proof (Gk. \textit{pistis}, Lat. \textit{probatio}; and, 4) conclusion or epilogue (Gk. \textit{epilogus}, Lat. \textit{peroratio}).
In the present instance, a brief exordium establishes the overall mood of the entire introduction, states an important harmonic gesture A\(^b\)ma\(^7\)-Dm\(^11\)-B\(^b\)m\(^{ma7}\)-F/A, and introduces basic melodic shapes. The presentation includes a paraphrase of the original melody over the jazz substitute changes and sets up compositional devices used in the departure, especially interpolated ii-V sequences and various techniques of melodic embellishment. The melody in the presentation unfolds in a well-controlled manner and features: the development of motivic cells, the expansion of melodic range, and the use of compound melody. The departure contains two separate harmonic ideas characterizing the uniqueness of the harmonic structure of “Stella By Starlight”: a descending fifth sequence starting on \(^#iv\); and the third-related progression Dm\(^7\)-B\(^b\)m\(^7\). They are subject to numerous transformations, such as melodic inversion, reharmonization, and the like. In addition, the motivic content from the presentation undergoes a substantial reworking. After the climax, a concise return section restates the original melody and revisits the most salient harmonic events from the exordium and the presentation. The codetta features a C pedal point and ingeniously anticipates the arrival of the tune. Tempo and continuity of the introduction constitute important factors determining the overall shape of the performance. The exordium has a certain tentative and “thoughtful” character to it. The presentation establishes a more defined tempo, but still within the confines of tempo rubato. This ebb and flow of temporal groupings seem to be completely dictated by the soprano line and Jarrett’s “singing” style of playing. The departure retains the melodic continuity of the presentation and still features an “improvisatory tempo rubato.” With the approach of the “head,” Jarrett establishes a precise tempo, thus signaling the entrance of the band. The use of “improvisatory tempo rubato” allows Jarrett to disregard barlines and organize the music with respect to its melodic and motivic components.\(^{106}\) Comparing Jarrett’s approach to formal construction and the definition of an unmeasured fantasia as articulated by Bach reveals remarkable similarities between the two, and reinforces the claim that composition and improvisation are mutually entwined.

The presentation often employs a paraphrase technique to address its melodic and harmonic content. J. Kent Williams, while commenting on the art of paraphrase in Oscar Peterson’s renditions of “Stella By Starlight” takes issue with Barry Kernfeld’s definition of paraphrase as “the recognizable ornamentation of an existing tune.”\(^{107}\) As Williams points out “[t]he condition of recognizability, or to use Meyer’s term conformance, to a preexisting model is crucial, but alteration seems preferable to ornamentation as the operative noun. For paraphrase does not always involve adding notes, which is what ornamentation implies. Rather, it may involve changing certain attributes of the original notes while keeping other attributes intact, or even deleting notes.”\(^{108}\) In Jarrett’s introduction, the paraphrase technique is brought to new heights, as he not only engages the original melody, but also – what expands Williams’s definition – transforms the introduction’s harmonic structure and even formal organization.

\(^{106}\) Therefore, in the process of transcribing, I encountered numerous places that were rhythmically ambivalent; thus, difficult to notate.
Exordium mm. 1-3

Notwithstanding its brevity, the exordium emphasizes “Stella’s” prominent key relations and plays an important role in shaping the melodic content of the departure and return sections. Jarrett employs his favorite “three-part layered” texture, with the soprano providing melodic content, the bass indicating harmonic function, and inner voices either supplying colorful extensions or weaving in contrapuntal lines.

One of the most salient tonal features of the jazz changes to “Stella’s” harmonic progression is the tritone relationship between the key of B♭ major and the #iv opening, and third-related harmonies (especially between Dm and B♭m). Jarrett’s first four chords in the exordium summarize these characteristics. The initial progression preparing the arrival of Dm7 features an expansion of a rootless A♭ma7 via Cm11. The opening A♭ma7 creates a tritone with Dm7, thus alluding to B♭ and Em7(b5). The third-progression Dm11-B♭m7 and its resolution correspond to mm. 11-13 of the original tune, thus occupying a prominent place within the initial three measures, while the original melody from mm. 11-13 serves as motivic material for the exordium.

Figure 5.1

Stella By Starlight - (mm.11-13)

The melody shown in Figure 5.1 gravitates toward ^5, f♯. The melodic activities of the exordium converge around a ^5 axis. Besides repeating motivic cells in almost identical forms, Jarrett utilizes the device of compound melody in a very basic and fundamental fashion. A sustained f♯ constitutes a lower voice and a melodic ascent up to b♭1 belongs to an upper voice of the compound melody. Further development of this technique occurs in mm. 17-19.

The melodic content of mm. 1-3 is diatonic and suggests an incomplete F Mixolydian. Since it is juxtaposed over the underlying harmony; however, it becomes subject to reinterpretation in a number of different harmonic surroundings. In m. 1, the melodic cell <c♯, e♭2, f♭, e♭2> is a part of an A♭ Ionian or A♭ Lydian content. A modal shift occurs on beats 3 and 4 when the <f♯, a♯, f♯, f♯, g♯> segment suggests a D Dorian environment. In m. 2, the melodic line resembles the original; however, the corresponding harmony suggests Bb melodic minor. The presence of the primary extension a within the left hand structure, as well as the use of g♯ and a♯, confirm the B♭ melodic minor.

109 For the analysis of the “head” of “Stella By Starlight,” consult Chapter 4.
Displaying great economy of means, Jarrett introduces fundamental compositional devices used throughout the introduction, and establishes basic dichotomies between stable and unstable formations. It is interesting to observe that, while Jarrett does not radically depart from the original content of the tune, he still makes the exordium sound spontaneous.

Presentation mm. 4-19

In the presentation section, Jarrett plays the melodic and harmonic material from the original tune in continuity, but ventures beyond the lead-sheet version in his use of harmonic substitutions, tonal expansions, and motivic developments. His treatment of harmony preserves many aspects of the original; the few notable exceptions include a reharmonization of original changes in m. 7, a contrapuntal preparation of m. 11, and the tonic expansion in m. 15. Improvised with a compositional logic, the design of the melody combines literal quotations from the tune and the exordium with developments of salient motivic cells. Toward the end of the presentation, however, Jarrett suddenly departs from the original content by introducing the technique of compound melody, thus anticipating and overlapping the departure section.

The compositional use of an interpolated ii-V sequence (mm. 6-7), whose origins stem from the reharmonization of the original changes, prepares the listener for extensive use of this technique in the departure section. Jarrett’s “wandering off” at this point is an indication that the presentation still exists in an imaginative time space that precedes the “head.” In m. 7, Jarrett reharmonizes E♭maj7 with a disguised ii-V progression – a continuation of the original harmony from m. 6. This brief harmonic expansion in m. 7 is followed by a return to the original melody in mm. 8-9. The motivic content of m. 8 plays an important role in the overall construction of the soprano line. Measures 10-11 constitute an extension of m. 8 and, to some degree, feature the development of the original motivic cell. The original motive – Primary Motive – shown in Figure 5.2 combines two intervallic features: a scalar descent from ^4 to ^1, plus a skip of a major third up to ^3.

![Figure 5.2](image)

Stella By Starlight - Primary Motive

Each of the four-note groupings in mm. 10-11 resembles Primary Motive in one way or another while proceeding in continuity with the tune at the same time. Jarrett’s motivic manipulations feature the following operations: replacement, expansion, deletion, and the like.110

Measure 10 loosely preserves the intervallic properties of Primary Motive. The opening note of the first four-note grouping, c^2, replaces the first note of Primary Motive and so the last note of the second four-note grouping. Beats 1 and 2 of m. 10 preserve the contour of Primary Motive while beats 3 and 4 inverts it. A scalar descent $4\rightarrow 1$ occurs at the beginning of m. 11 in its original form transposed up an octave. An octave displacement of a $<d^1-e^b_1>$ dyad ends the first occurrence of consecutive 8th notes. The notes d^1 and e^b_1 are members of an incomplete (inverted) Primary Motive in which the notes b^b and c^1 are replaced by d^2 and e^b_2.

A general outline of the soprano line (Figure 5.3) in mm. 9-17 features an arch-like contour and employs Primary Motive and motivic fragments from mm. 1-3. Its structural properties include an $<f^1-d^2>$ ascent (mm. 9-12), followed by a $<d^2-d^1>$ octave descent (mm. 13-15). Scale degree 3, in m. 12, is the 5th of a $G^7(b9)$ and is embellished with an upper neighbor, the b13, of a $G^7(b9,b13)$ sonority. The $<d^2-d^1>$ octave descent embodies familiar motivic components, including variants of Primary Motive and/or introductory motivic fragments.

Figure 5.3

Saturation of Primary Motive - (mm.9-17)

![Image of musical notation](image-url)
By continually reiterating the f^1 on the off-beats and articulating a separate melodic strand on the downbeats (mm. 17-19), Jarrett implies “compound melody” (which was previously hinted at in mm. 1-3). Compound melody, a typical compositional technique of the Baroque period, is manifested in mm. 17-19 as the melodic components on the downbeats expand the structure of specific chords. Measures 17-19 include an inner-voice “pedal point” on f^1, a circle-of-fifth progression (harmonic cycle), and an independent contrapuntal line. The dissonances occurring on strong beats can be justified as extensions of the downbeat chords. Figure 5.4 summarizes the relationship between the downbeat melody and corresponding chords.

Figure 5.4

Compound Melody- (mm.17-19)

![Diagram of Compound Melody](image)

The harmonic progression of mm. 16-19 in the presentation corresponds to the last eight measures of the original tune; it includes a descending ii7-V7 sequence beginning on 4. The counterpoint line in the tenor voice <$d, e^b, g, a, f, g, e^b>$ (mm. 18-19), along with the soprano line, disguise the underlying progression and provide an example of Jarrett’s contrapuntal elaboration of harmony. This relationship is shown in Figure 5.5.
A similar elaboration of the harmony can be seen in mm. 10-11, where the jazz changes: Fma$$e^7$$-Em$$e^7$$-A$$e^7$$-Am$$e^7$$-D$$e^7$$-G$$e^7$$ undergo a similar transformation as illustrated in Figure 5.6. The middleground level comprises a number of passing chords that expand a tonal space controlled by ii$$e^7$$ in mm. 10-11. The essential jazz counterpoint line features a stepwise descent and establishes a contrary motion with the melody.
Jarrett’s treatment of the original melody in the presentation indicates that the position of \(^1, ^3, \text{and} ^5\) on downbeats is not accidental; instead, it reveals his central concern in projecting the tonality of the introduction. The distribution of notes in the original melody (see Figure 5.7) places metric accents on \(^7\) and \(^5\). Jarrett’s elaboration, however, shifts emphasis from \(^7\) to \(^3\) and \(^1\), then descends down to \(^5\). This subtle shift not only emphasizes a \(^3-1\) span at the expense of chordal extensions, but also delineates the chord tones of the governing tonic. The underlying harmonic progression, however, disguises the melodic unfolding of the B\(^b\) triad: \(^3\) becomes the 7\(^{th}\), \(^1\) the diminished 5\(^{th}\) of Em\(^7(b5)\), and \(^5\) in m. 2, a natural 11\(^{th}\) of Cm\(^{11}\).

Figure 5.7

Comparison - Lead-Sheet and Jarrett

Lead-Sheet Version

![Lead-Sheet Version](image)

Jarrett's Version

![Jarrett's Version](image)

Although the surface harmonic progression of mm. 4-7 (with the exception of B\(^b\) in m. 8) does not support the tonic, the distribution of chord tones within the melody and their metric placement emphasize the key of B\(^b\). Since the B\(^b\) triad in m. 8 is a harmonic goal of the initial progression and its chord members constitute essential melodic components of mm. 4-7, we may assert that the arrival of B\(^b\) is as an example of a backward projection of the triad. Incidentally, this progression (beginning on “iv”) is often used as an effective reharmonization of a diatonic progression, provided that the soprano line yields either \(^3-2-1\) or \(^8-7-6-5\) melodic patterns. Figure 5.8 shows the \(^3-2-1\) and \(^8-7-6-5\) melodic patterns and their harmonic realizations.
Throughout the presentation, \(^5\) and other members of the governing triad have been metrically stressed, even though the underlying harmonies might have disguised their obvious functionality. The beginning of the presentation emphasizes \(^3\) and the end features pedal point on \(^5\) in an inner voice. Between these structural posts, Jarrett makes frequent references to the chord tones of the governing tonic by positioning them on the beat, and yet conceals them as members of different harmonic formations. The space between chord tones is filled-in by diatonic passing notes (with the exception of \(^b7\) and \(^b6\)) or decorated with upper or lower neighbor tones. A voice-leading reduction of the presentation, given in Figure 5.9.a, indicates these relationships.
Figure 5.9.a

Stella By Starlight - Presentation

Figure 5.9.b shows the distribution of main key areas throughout the presentation.
The end of the presentation (mm. 17-19) elides with the departure section as an arch-like melodic line spans over the formal boundaries. A gradual expansion of registral space up to d^2 in m. 20 is followed by a chromatic stepwise descent toward f in m. 23. Independent of the underlying harmonic progression unfolding of the melodic phrase (mm. 17-19), and its balanced, consequent (mm. 20-23) over the same harmonic basis, constitutes an ingenious method of launching the departure section such, that one hardly notices the division, despite the clear reference to the opening changes in mm. 20-21.

Departure mm. 20-42

A large melodic motion beginning in m. 17 constitutes an antecedent phrase (mm. 17-19), while the opening of the departure section corresponds to the consequent phrase. A sense of melodic continuity conceals formal boundaries, thus securing an uninterrupted flow of the introduction. The departure draws on three salient ideas that define the overall structure of “Stella By Starlight”: a descending sequence of ii-V’s beginning on #^4; Primary Motive; and a third-related progression: Dm7-Bb7-(Fadd2/A). Figure 5.10 displays these ideas.
Figure 5.10

Three Salient Ideas

#iv Progression

Em\(^7(b5)\) A\(^7\) Dm\(^7(b5)\) G\(^7\)

Cm\(^7(b5)\) F\(^7\) B\(^b\)ma\(^7\)

Primary Motive

B\(^b\)ma\(^7\) Em\(^7(b5)\) A\(^7\)

Third-Related Progression

Dm\(^7\) B\(^b\)m\(^7\) E\(^b\) Fma/A A\(^b\)o\(^7\)

The departure comprises three subordinate parts, mm. 20-30, mm. 31-35, and mm. 36-42. Measures 20-30 feature Jarrett’s treatment of the sequential ii-V’s beginning on #iv, that correspond to the last eight measures of the tune. Jarrett first renders the descending sequence in its original form (mm. 20-23), then inverts it (last beat of mm. 23-25), and finally, chromatically expands it (mm. 26-30). Measures 31-35 make a large-scale reference to the exordium. The opening progression Dm\(^7\)-B\(^b\)m\(^7\)-(F\(^\text{add2}/A\)) undergoes three sets of melodic and harmonic transformations. Measures 36-42 prepare the climax of the introduction and further develop the motivic material from the presentation. Measures 20-30 and mm. 31-35 exhibit a well-organized design and they demonstrate Jarrett’s compositional approach to improvisation. Not only does he balance each section by transforming the principal idea three times, but, also with each consecutive repetition, Jarrett ventures into a more complex harmonic territory.

Measures 20-30 reinforce the large-scale meaning of the #iv sequence. The original form of the descending progression yields Em\(^7(b5)\)-A\(^7\)-Dm\(^7\)-G\(^7\)-Cm\(^7\)-F\(^7\) and corresponds to mm. 20-22 of the introduction. Its inversion in mm. 24-25 includes an ascending sequence of ii-V’s, i.e.
Gm7-C7-Am7-D7. The chromatic expansion beginning in m. 26 constitutes the longest, and harmonically most advanced span: C#m7-F♯7-Bm7-E7-Am7-D7-Gm7-C7-F7-Bbma7. C#m, at the beginning of m. 26, relates by a tritone to Gm, the key of the relative minor – an association that mirrors the tritone relationship between Bb major and Em7(b5).

The melodic content of mm. 20-30 – properly understood as an autonomous entity – resembles that of the presentation and unfolds independently of the harmonic structure of the tune. Measures 20-22 feature a chromatic d²-f⁴ descent that expands the earlier diatonic descent occurring in mm. 4-5 of the introduction. Notice that the choice of chromatic notes imbues the underlying chords with mostly secondary extensions raising the level of dissonance considerably over the earlier section. The resulting verticalities present an impressive array of voicings shown in Figure 5.11.

Figure 5.11

A ii-V local progression in m. 23 tonicizes vii and triggers an inverted ii-V harmonic ascent. The melody in m. 23 contains some residue of Primary Motive and undergoes inversion and transposition to a different pitch level. Its goal – an expressive suspension resolving
upwards – elides with the beginning of the inverted harmonic ascent.\(^{111}\) Measure 25 features the same type of suspension as \(b^9\) becomes the \(b^9\) of Am\(^7\) and resolves up to \(c^2\).

The last reiteration of the descending ii-V sequence is the longest, and presents the furthest tonal departure from the tonic so far. Jarrett no longer relies on the original harmonic framework of the tune and approaches this chromatic expansion in a stepwise fashion. The seventh between the bass and soprano \(<d, c^5>\) in m. 25 resolves to an octave \(<c^#, c^9>\) in m. 26. The \(D^7\) functions as a chromatic upper neighbor to the prior \(C^b\) m (\(b^II\) – Phrygian preparation). The melodic activity of the passage in mm. 26-28 suggests \(C^b\) Aeolian and unfolds more independently from the underlying harmonic progression. Insofar as the inner voices venture beyond \(C^b\) Aeolian, the melodic line comprises scalar fragments and major/minor skips.

Measures 31-35 establish a large-scale connection with mm. 1-3 of the introduction. The third-related progression \(Dm^7-B^b m^7-F^add2/A\) undergoes harmonic and melodic embellishment in three stages. The melodic content features an expansion of range (up to \(a^2\)), a jagged contour, and development of previously stated ideas. In m. 31, Jarrett horizontalizes members of the \(B^b\) triad in the soprano, while the auxiliary ii-V progression accesses a temporary tonic, \(Dm\). A melodic ascent up to \(e^2\) begins on the secondary extension, \(e^2\). The preparation of \(e^2\) occurs a beat earlier, where it constitutes the 5th of \(A^7\). A downward arpeggiation of the \(F\) triad in m. 32 pertains to the \(Dm^7-B^b m^7\) progression. Each time the implied descent \(B^b m^7-F^add2/A\) occurs, it enjoys a different harmonic realization. In bar 33, a rootless \(A^7(9)\) prepares the arrival of a complete \(A^7(b13)\), in the next measure, a \(Gm^7\) precedes \(A^7(9)\), and then, in m. 35, the \(A^7(9)\) anticipates \(A^b m^7(9)\).

The design of inner voices has strong melodic qualities and demonstrates Jarrett’s approach toward counterpoint. Measures 31-35 include a well-articulated contrapuntal voice that supports the soprano line. The ascent up to \(g^2\) in m. 32 is accompanied by an \(<a, c^b, c^1>\) counterpoint in the tenor voice, thus accommodating \(D^b\) melodic minor and \(D\) Dorian environments, respectively. A contrapuntal expansion of \(Dm\) (m. 35) suggests a similar harmonic choice as in m. 32, yet the contrary motion between soprano and tenor voice (loosely resembling the technique of voice-exchange) produces a fresh-sounding sonority. In addition, \(d^2\) functions as an axis of symmetry between the soprano and alto, and functions as the center of a melodic “wedge.” Both contrapuntal voices (tenor and alto) are saturated with chordal extensions whose unorthodox placement with respect to the chord tones of \(D\) minor (\(<e^1-d^2>, <d^1-c^b>\)) reinforces additional tension emanating from within the chord.

Measures 36-39 continue to display Jarrett’s contrapuntal approach to harmony. The chromatic descent in the bass features expansion of an \(A^b-D\) tritone span. Once again, Jarrett makes a large-scale reference to the beginning of the introduction, and elaborates the \(A^b-Dm\) progression from m. 1. The melodic gesture \(<f^4, g^1, a^b1>\) serves as a building block for the soprano line and constitutes a truncated and inverted version of Primary Motive. The trichordal idea in mm. 36-37 occurs in exact inversion and transposition. In mm. 38-39 Jarrett takes intervallic liberties with Primary Motive but nonetheless preserves the three-note grouping. For instance, a three-note cell \(<a^b1, b^b1, b^1>\) in mm. 38-39 constitutes a compressed version of Primary Motive.

The outer-voice counterpoint in mm. 36-39 reveals interesting intervallic properties. Jarrett begins the passage with a major 6th between the bass and soprano. The melodic \(a^b1\)

\(^{111}\) This type of suspension is commonly known as retardation.
anticipates the arrival of G7 and functions as a 9-8 suspension whose preparation follows the rules of traditional Common-Practice theory. Measures 37-38 repeat the content of m. 36, transposed down a whole step. The arrival on Dm in m. 39 uses six-voice structures, the function of which is disguised by the absence of the minor 3rd.

The distribution of the chord members <D, A, e> in the left hand, and <c1, e1, b1> in the right hand in m. 39, indicates the Aeolian environment. The juxtaposition of the E major triad on beat 2 of m. 39 against a quintal, left-hand structure implies a Lydian setting. It can be argued that b1, being a “beauty mark” of the Aeolian hexamode (along with the primary extension, c1), projects the minor characteristics of the chord. The subsequent polychord, although its content is often interpreted as a Dma7(#11), is not perceived as such due to its weaker metric position and transitional function within the overall progression. By analyzing the content of m. 40, we can infer that the E major triad in upper voices serves as preparation for the C# minor chord and functions as a pivot; thus, enabling a smooth transition between D minor and C# minor. The period of harmonic ambiguity in mm. 39-40 is settled in favor of C# minor. Figure 5.12 proposes a voice-leading reduction of the departure section.
Figure 5.12

Stella By Starlight - Departure

\[
\begin{align*}
&\text{m. 20} & & \text{m. 30} \\
&{}^3 & ^1 & ^5 & ^1 & ^3 & ^3 \\
&G\flat & G\flat & B\flat & B\flat & D & G\flat \\
&iv & V\flat & iii & vi & I & vi
\end{align*}
\]

\[
\begin{align*}
&\text{m. 31} & & \text{m. 39} & & \text{m. 42} \\
&{}^1 & (^3) & (^3) & (^3) & ^7 & ^3 \\
&G\flat & G\flat & B\flat & B\flat & D & G\flat \\
&iv & V\flat & iii & vii & Bb & iii
\end{align*}
\]

\[
\begin{align*}
&Dm & i & V\flat & i & V\flat & V\flat & ^bII^7 & i
\end{align*}
\]
The last three measures of the departure section are harmonically the most challenging; they project another, yet more intense, expansion of a tritone span via a descending ii-V progression that begins in C♯ minor. The harmonic caesura on some type of G7 (m. 42) constitutes the climax of the introduction, discharging energy accumulated throughout the introduction. Jarrett’s settling on G7 emphasizes secondary extensions and constant intervallic structures in the inner voices. Note that his implementation of parallel intervallic structures (m. 42) does not obscure our overall perceptions of the dominant sonority. The outer-voice counterpoint uses the root in the bass, with the 7th in the soprano. Even though consecutive parallel fourths include g♭1 (a major 7th!), its passing, dissonant status only enhances the realization of the G7 chord.

In summary, Jarrett manifests the developmental character of the departure section by employing interpolated ii-V sequential progressions; he expands its tonal boundaries by exploring two types of tritone relationships: 1) primary – between the tonic and ♯4, and 2) secondary – between the relative minor and ♯2. The compositional use of interpolated ii-V progressions is crucial in preparing and entering new tonal areas, such as C♯m in m. 26. Jarrett utilizes these devises quite spontaneously, yet their structural logic testifies to his ability in forging a compelling formal design that requires a little more than “few rules of construction.”

Return and Coda mm. 43-51

The return combines the transformation of the opening gesture of the original tune with a brief restatement of the third-related progression Dm7-B♭m7 from mm. 1-3 of the exordium. The melody returns to its normal register in m. 43, following a dramatic registral shift from g2 to a1. A voice-leading reduction of mm. 43-47 is shown in Figure 5.13.
Notice that Jarrett’s harmonic progression in mm. 43-46, given the effective tonicization of IV, recapitulates the harmonic setting of mm. 4-8 of the presentation. The treatment of IV in m. 45 illustrates Jarrett’s constant search for new harmonic territories. The superimposed D major triad over E♭ in the bass portrays a complex formation with the #9 and #11 as secondary extensions. Note that the use of #9 within the structure of a major chord is not considered standard by traditional jazz syntax. Its presence, however, can be explained as a borrowed extension from the E♭-based DNC.

In preparation for the arrival of the C pedal point, the progression Dm7-B♭m7 in m. 47 attains a predominant function. The choice of the secondary dominant as a penultimate tonal area prior to the arrival of the head corresponds to the relationship between B♭ and F7 from the opening of the original version of “Stella.” The B♭ functions as a rootless C7(b9) and tonicizes F7. Jarrett’s use of the pedal point on C partially explains this unusual production.

Jarrett’s prelude to “Stella By Starlight” exhibits a well-organized structure in which salient harmonic and melodic entities from the original tune constitute the basic building blocks of the entire introduction. Its highly logical design, along with a gradual unfolding of musical ideas, suggests precompositional planning on Jarrett’s part. Unfortunately, there are no other recordings of “Stella” by Jarrett, the comparison of which could reveal some commonalities or the existence of precompositional elements. If, for a moment, we entertain a thought that the introduction was entirely extemporized (which I think it was), the line dividing improvisation and composition becomes very thin; I claim that the distinction between the two, on the part of great improvisers, is irrelevant to an understanding of their improvisational techniques.
“Come Rain Or Come Shine” – analysis

Jarrett’s introduction to “Come Rain Or Come Shine,” (by Johnny Mercer and Harold Arlen), shares a number of characteristics with the introduction to “Stella By Starlight.” Similarly to his introduction to “Stella,” Jarrett’s transformation of “Come Rain Or Come Shine” also explores the apparent duality between free fantasy and the tune’s cantus firmus. Free fantasy elements are manifested in his sophisticated handling of larger chordal formations and a compositional logic that expresses the overall tonal organization.

General observations

“Come Rain Or Come Shine,” (for the lead-sheet version consult The Real Little Ultimate Jazz Fake Book (Hal Leonard Publishing, 1992), pp. 86-87) along with three types of harmonic changes: 1) provided by the composer in the published version of the tune as a piano arrangement (these are indicated by an “**” and referred to as the “original changes”); 2) as they occur in The Real Little Ultimate Jazz Fake Book (these are indicated by a “***” and referred to as the “jazz changes”); and, 3) realized by Jarrett during the performance of the head (these are indicated by a “****” and referred to as the “Jarrett’s changes”), is shown in Example 5.2. The cantus firmus is dominated by repeated-note figures (mostly chord tones of the corresponding harmonies) and numerous blues components. Forte in his analysis of the tune, posits that repeated notes indicate “the lover’s determination.” One of the most interesting characteristics of the tune, demonstrating Arlen’s compositional mastery; however, was pointed out by Wilder in his American Popular Song. Wilder emphasizes the importance of the last half of the song building “inexorably to the final f natural” and the role of “the two descending notes, f and e” anticipating the arrival of the final d2 in m. 31. The significance of these descending notes, although often omitted from the instrumental renditions of the tune, will be extensively explored by Jarrett in his solo introduction.

The peculiarities of the formal organization of “Come Rain Or Come Shine” are comparable to those of “Stella By Starlight.” The latter has four distinct melodic phrases unfolding in a through-composed fashion with the harmonic structure suggesting a modified off-tonic AABA prototype. The former is based on a modified ABA’C form (+ two-measure extension on the repeat). Its unusual tonal organization, however, features a large-scale motion from the major tonic to the relative minor, and a final cadence (which is omitted from Jarrett’s rendition) on D major with an overarching <f2, e2, d2> descent, strongly suggesting blues inflections. The examination of the melodic content demonstrates the presence of typical

112 The tune was recorded on July 13th 1986 at Philharmonic Hall in Munich and released on ECM Records in 1986. The album Still Live (ECM 1360/1, 1986), on which the tune appears, was produced by Manfred Eicher.
115 F2 is a blue note, (b3), of D major.
blues characteristics such as: descending-third motivic gestures and the distribution of the “blue notes.”

Example 5.2

<table>
<thead>
<tr>
<th>A</th>
<th>Original *F</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jazz **F</td>
<td>Bm(^7)(b5)</td>
</tr>
<tr>
<td>Jarrett***F</td>
<td>Em(^7)(b5)</td>
</tr>
</tbody>
</table>

- G\(^7\)
- C\(^7\)
- F\(^7\)
- G\(^b\)
- Cm\(^7\)
- F\(^7\)

\[\begin{array}{llll}
5 & Gm\(^9\) & C\(^7\)\(sus(b9)\) & F\(^7\) \\
9 & Bm\(^7\)\(^b9\) & Fm\(^6\) & Bm\(^7\) & Gm\(^7\) & C\(^7\) \\
\end{array} \]

<table>
<thead>
<tr>
<th>B</th>
<th>Bm(^7)(^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bm(^7)(^b)</td>
<td>Fm</td>
</tr>
</tbody>
</table>

- Cm
- Cm
- F\(^7\)
- Bm\(^7\)
- E\(^7\)
- Am\(^7\)\(^b5\)
- D\(^7\)\(^b9\)
- Am\(^7\)\(^b5\)
- D\(^7\)
- G\(^13\)
- C\(^9\)

| 13 | Bm\(^7\)\(^b5\) | E\(^7\)\(^b9\) | Am\(^7\)\(^b5\) | D\(^7\) \(^b9\) | Am\(^7\)\(^b5\) | D\(^7\) | G\(^13\) | C\(^9\) |

* These are "original changes" provided by the composer and included in the published lead-sheet version (with the piano accompaniment).

** These are "jazz changes" appearing in *The Real Little Ultimate Jazz Fake Book*.

*** These are "Jarrett's changes" during his rendition of the head.
The melody of the A section (mm. 1-8) arpeggiates the tonic triad and centers upon the primary tone, a\(^1\). It is interesting to note that \(^\flat 3\) is repeated 13 times.\(^{116}\) The B section (mm. 9-16) utilizes “blue” notes: a\(^b1\) (\(^\flat 3\)) in m. 5 and m. 7; and e\(^b2\) (\(^\flat 7\)) in mm. 10-11 within the melodic structure. The presence of these chromatic notes opens the possibility for various chordal expansions. The A’ section (mm. 17-24) continues to explore the repeated-note idea by transposing it in mm. 21-22 by an ascending major second. This transposition serves as a modulatory link to the key of D minor. The pivot b\(^1\) constitutes \(^\# 4\) and functions as \(^\# 6\) in the context of D minor. The C section (mm. 25-32) further develops the repeated-note idea, introduces octave displacement of a new tonic note, and establishes the key of D minor. Once the key of D minor is brought into focus, the repetition of <d\(^2\)-d\(^1\)> within the four-measure span (mm. 25-28) confirms the arrival of the new key. Since the original version of the tune cadences in D major following an additional two-measure expansion, Forte points out that this ending sets the arrival of “shine.”\(^{117}\) Because of this tonal duality (along with that of F major and D minor), it is probable that “Come Rain Or Come Shine” explores third-related key centers, yet on a much smaller scale than its classical counterparts. Figure 5.14 shows a melodic reduction of the tune.

Figure 5.14

Come Rain Or Come Shine - melodic reduction

```

```

“Come Rain Or Come Shine” has a distinct phrase organization with clearly discernible phrase models. The first A section is based on Phrase Model 7 with a harmonic departure on ii. Measures 4-5 indicate the key of harmonic departure. The B section features Phrase Model 3 marked by an unusual harmonic departure on v. This harmonic departure corresponds to the jazz changes. Jarrett’s harmonic treatment of the B section incorporates Phrase Model 3 but with a harmonic departure on iii. Jarrett’s transformations of the jazz changes are more idiomatic and consistent with the jazz practice. It can be argued, for instance, that the use of C minor in m. 14

\(^{116}\) The only other tune which has such a persistent repetition of a single note is “You Go To My Head” – 12 times and 7 more down the octave. This passage appears at the end of the bridge.

of the jazz version has strong classical underpinnings. Jarrett’s choice, Am⁹, is derived from the jazz changes through a minor third replacement, and prompts a more goal oriented cycle-of-fifths progression, Am⁹-D⁷-G⁷-C⁷ in mm. 15-16. Measures 14-16 constitute one of the most interesting section of the tune. Comparison of the three types of changes controlling mm. 14-16 indicates an interesting discrepancy between them. The Arlen’s changes – being the most sophisticated and rooted in the late 19th-century harmonic practice – feature a motion from Ebm to C⁹ with intervening diminished triads. The jazz changes, probably the least interesting of the three, begin on Cm, weave in a chromatic ii-V, before an interrupted cadential closure in m. 16.

The second A section has a complex harmonic design whose structure resembles an incomplete Phrase Model 7 with a harmonic departure on III (mm. 23-24). Because of its unusual cadence in the relative minor, the final section in mm. 25-32 shows characteristics typical of three distinct phrase models, an incomplete Phrase Model 14 (mm. 25-28), an incomplete Phrase Model 5, and an incomplete Phrase Model 1 (mm. 29-32). The incomplete nature of the former is manifested by the omission of III at the beginning of the phrase and its overall length of only four measures. The conclusion of the song presents analytical problems concerning the role of D minor. In the process of chorus improvisation, D minor functions as the submediant key which relinquishes its strong position in favor of the ii-V progression in m. 32 preparing the arrival of the tonic in m. 1. In this scenario, mm. 29-32 can be characterized as the incomplete Phrase Model 5. The final reiteration of the head, however, concludes on vi; thus, the incomplete Phrase Model 1 in the key of D minor better summarizes the phrase’s harmonic content. Figure 5.15 outlines the distribution of phrase models in “Come Rain Or Come Shine.”

Figure 5.15

Prototype: Come Rain Or Come Shine

<table>
<thead>
<tr>
<th>Phrase Model 7(ii)</th>
<th>Phrase Model 3(v)</th>
<th>Phrase Model 7(III)</th>
<th>inc. Phrase Model 14(ii)</th>
<th>inc. Phrase Model 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>Iv</td>
<td>ii-V</td>
<td>III</td>
<td>VI</td>
</tr>
</tbody>
</table>

Analysis of the Introduction

Jarrett’s solo introduction displays a compositional approach to improvisation. Among its features are 1) a compelling formal organization, 2) a greatly expanded harmonic palette (as compared to the harmonic vocabulary of “Stella By Starlight”), and 3) multiple transformations of salient phrase models. Table 5.2 proposes a formal chart of the entire introduction.¹¹⁸

¹¹⁸ In my opinion, the partition of the introduction into formal sections is subjective and considers the extent to which original content is manifested within each section.
Table 5.2

Formal Chart: *Come Rain Or Come Shine* (introduction)

<table>
<thead>
<tr>
<th>PRESENTATION</th>
<th>TRANSITION</th>
<th>DEPARTURE</th>
<th>CODETTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm. 1-18</td>
<td>mm. 19-27</td>
<td>mm. 28-45</td>
<td>mm. 46-51</td>
</tr>
</tbody>
</table>

Jarrett’s overall design draws on melodic and harmonic characteristics of the tune, such as the repeated-note idea (mm. 12-13, 15-16, 18-19), a tonal dichotomy between F major, F minor, and D minor, and numerous blues inflections. The repeated-note becomes an upper-voice pedal point serving as an anchor for harmonic explorations in inner voices. The tonal dichotomy between F major and D minor exploits the ambiguity inherent in chordal structures and their function within these two keys. Blues elements serve as convenient modulatory links between the keys and their ambiguous nature is strongly projected within the two tonal areas. My transcription of the introduction is shown in Example 5.3. Its formal design features four sections: presentation (mm. 1-18), transition (mm. 19-27), departure (mm. 28-45), and codetta (mm. 46-49).

Example 5.3
The presentation loosely follows the design of the melody as original elements (cantus firmus) interact freely with improvised components (free fantasy). In the first eight measures of the presentation, Jarrett contrasts recognizable elements of the tune (mm. 1-4) with a freely improvised melody (mm. 5-8) over the basic harmonic structure of the B section. Measures 1-4 of Jarrett’s presentation provide the harmonic synopsis of the A section of the tune, transforming the governing phrase model in a relatively uncomplicated manner, and introduce both keys of the tune, F and Dm. Double-neighbor figures decorate the structural 3 (mm. 1-2) and 1 (mm. 2-3). The reinterpretation of 3 in m. 2 as the 11th of Em(7(b5)) launches the tonicization of D minor in m. 3.

Voice-crossing is one of Jarrett’s favorite voicing techniques. On the downbeat of m. 3, the principal melody dips into an inner voice, while the accompaniment engages in providing a subtle counter-melody above the soprano: t in m. 3 constitutes an inner voice, and a linear ascent 1-3 (mm. 3-4) from the alto voice balances the 3-1 soprano descent (mm. 1-2). The notes g and a, however, function as secondary extensions of the 11th of Dm11 and the 9th of G7(9#11), respectively.
Measures 6-8 of the presentation summarize the content of the B section of the tune. The harmonic setting of the B section shifts abruptly to the minor subdominant and can be reduced to the iv-i-ii-V progression, Phrase Model 3. Though only brief, this modal juxtaposition into the minor subdominant anticipates forthcoming explorations of other secondary key areas (most notably vi) in which blues components serve as vehicles for producing unexpected harmonic transformations. Since the members of the blues scale fit well in both major and minor environments, Jarrett throughout the introduction vividly explores this apparent dichotomy. Whereas the presentation refers to the original harmony, subsections of the departure focus on exploring melodic patterns strongly imbued with the blues elements within the confines of F major and D minor.

Measures 9-11 of the presentation feature a descending fifths progression, starting on $^\#\sharp 4$, and proceed to C in the second half of m. 11. It can be argued that the melodic content draws on the last four measures of the tune, particularly m. 29. The original fourth span a^1-d^2 occurs in mm. 9-10 of Jarrett’s introduction. The upward expansion of this fourth span up to e is interrupted by a four-note blues cell, $<b^1-a^1-b^2-d^2>$, over a D7 harmony. The e in the original tune constitutes the 5th of A$^7(b9)$, and, in Jarrett’s rendition, it is reinterpreted as the 13th of G$^7(#11)$. The chord progression of mm. 9-11 employs typical jazz techniques, such as tritone substitution (m. 11), contrapuntal motion in inner voices (E7alt in m. 9, Am$^7(b5)$ in m. 10), chromatic “side-stepping” (motion from A$^b^7(13, #11)$ to G$^7(#11)$), and the superimposition of triadic structures over various dominant chords. In m. 11, Ab features a superimposed Bb major triad, G7 an A major triad, and C both, Ab and Gb major triads. Although the downward slide from Ab to G7 is in danger of producing parallel perfect intervals, the contrary motion in the right hand (especially the soprano) from the Bb triad to Fma$^7(#5)$ balances the harmonic content of the left hand.

Measures 12-18 correspond to the A’ and C sections of the original tune. The repeated-note idea occurs three times (each time at a different pitch level), and, along with a downward skip of a major 3rd (m. 14 and m. 17), receives a sophisticated harmonic treatment. The repetition of a1 (13 in total) creates pedal point effect in an upper voice. By avoiding proper resolutions (implied by underlying harmonies), the melodic a1 accumulates a large amount of energy, which is released when it finally becomes the 5th of D minor in m. 14.

The harmonic terrain of mm. 12-14 stems from a contrapuntal expansion of Phrase Model 7. The motion from I to vi is filled with chromatic dominant structures marked by an oblique relationship between the outer-voice counterpoint. Measures 12-14 evince a strict hierarchy between structural and ornamental formations. Although all of the verticalities are functionally definable and pertain to specific families of chords, some of them function as accidental harmonies embellishing the fundamental structure. For instance, the Fma$^7(#5)$ in m. 12 constitutes a viable, yet far-fetched substitution of a major chord derived from the MNC. The c$^#1$, being $^\#5$ of F major, anticipates the arrival of the A$^7(9)$ two beats later. Parallel dominant chords fill in the space between 1 and 3, with $^\#3$ becoming a pivotal member of G$^7(#11)$ and A$^b13(b9)$. In m. 13, $^\#3$ constitutes the 7th of Bm1, the 13th of Csus7, the $b13$th of Cm^7, and the root of A$^7(b9)$, before reaching Dm9 in m. 14. The Dm9 in m. 14, however, acquires a passing status and moves up to G9 on beat four of m. 14. The voice leading of the progression features mostly stepwise motion. The preparation of chromatic secondary extensions utilizes either modified suspensions or direct chromaticism.

119 See Chapter 3.
The content of mm. 15-18 in the introduction transforms the original harmonic progression. The original sheet-music version (Arlen’s changes shown in Example 5.2) includes the following changes: Dm-G\(^7\)-G-E\(^7(b5)\)-A. Jarrett’s transformations of the original progression are more in tune with the jazz idiom. First of all, a ii\(^{-7}\)-V\(^7\) progression starting on \(^4\#\) commences the progression with \(^4\#\) becoming the root of Bm\(^11\). The harmonic content of mm. 15-16 is imbued with a subtle contrapuntal motion in the inner voices, as well as a lower chromatic neighbor in the bass that changes the harmony from some type of E\(^7\) to a rootless B\(^7\alt\). The harmonic goal of mm. 15-18 is G\(^7\) in m. 18. Note that G\(^7\) in m. 18 features a three-note voicing without the 3\(^rd\). The cycle-of-fifths progression used by Jarrett, Bm\(^7\)-E\(^7\)-A\(^7\)-D\(^7\)-G\(^7\), consists of a number of harmonic and contrapuntal transformations. Jarrett substitutes A\(^7\) (which was supposed to occur at the beginning of m. 17) with E\(^b\)m\(^11\)-E\(^b7(#11)\). This harmonic option originates from perfectly utilized rules of voice leading. While the soprano voice ascends from b\(^1\) to d\(^b2\), the notes e, d\(^1\), and g\(^1\) descend down by a minor second to e\(^b\), d\(^b1\), and g\(^b1\), respectively. At the same time, g\(^#\) and f\(^1\) are held over as common tones. The resolution down to Dsus\(^7\)-D\(^7(b9)\) continues a stepwise descent. The treatment of G\(^7\) in m. 18 includes a reharmonization of the soprano repeated note with passing chords, intervallic structures, and an interpolated D\(^7\alt\) with its tritone substitution, A\(^b7(#11)\). A seven-voice G\(^7(#11)\), in m. 19, confirms the G\(^7\) harmonic environment derived from the rDNC on G, the Lydian \(^b7\) hexamode. With the soprano moving up to e\(^2\) in m. 19, Jarrett abandons the cantus firmus and forges a compellingly improvised free fantasia. Figure 5.16 illustrates a voice-leading reduction of the presentation.

Figure 5.16

Come Rain Or Come Shine - Presentation
The role of the transition is to connect the presentation and the departure sections. In the transition, Jarrett continues – in a manner resembling gospel “meditation” – to transform salient ideas from the presentation as well as segments from the tune itself, namely the last eight measures. As has been pointed out, the ending of “Come Rain Or Come Shine” features a repeated octave in a manner resembling gospel “meditation” – to transform salient ideas from the presentation as well as segments from the tune itself, namely the last eight measures. As has been pointed out, the ending of “Come Rain Or Come Shine” features a repeated octave and a melodic motion to through a chromatic fourth span, . The final note is embellished with an upper double-neighbor figure resembling a “sigh” motive from m. 31 of the lead-sheet version (Example 5.2). Jarrett begins the transition on which is a step higher from the original and then in m. 22, transposes the “sigh” motive, , up a minor 3rd; thus, emphasizing blues components embedded in the structure of the tune.

The richness of Jarrett’s harmonic vocabulary in the transition is evident in the use of complex chordal and intervallic structures, as well as in his creative reharmonizations of relatively simple melodic gestures (mm. 21, 24, and 26). These melodic fragments, at first seemingly inconsequential, govern the harmony and have strong blues characteristics – a feature that unifies the disparity between F major and F minor. In the transition, Jarrett displays melodic concerns and his preoccupation with the shape of the soprano line determines the overall character of the transition.

The highest note in the transition, – motivated by of the tune – constitutes an important pitch. Not only does it belong to the F blues (or F minor) scale, but it also occurs three more times in the course of the entire introduction, each time with different harmonic realization. A superficial glance at the harmonic structure of the transition reveals that Jarrett incorporates a number of harmonic and voice-leading techniques we have already encountered in his introduction to “Stella By Starlight.” Devices including: 1) interpolated progressions beginning on and sequentially moving to a specific harmonic goal, 2) modified tritone substitution techniques, 3) root movement by fifths, and 4) deceptive resolutions resulting from voice leading considerations, seem to be elevated to new heights of harmonic complexity.

Jarrett begins the transition with a repeated-note idea that continues the phrase from the previous section. The harmonic role of mm. 19-21 is to return to the tonic. In the process of doing so, Jarrett embellishes the ii-V-I progression. The melodic characteristics of the soprano line are ambiguous; only a diatonic ascent in m. 21 confirms its tonic membership. It can be argued, however, that an descent anticipates the ascent up to in m. 21. An octave displacement , followed by a skip up to , constitutes a n arpeggiated elaboration of . Similarly, functions as an upper chromatic neighbor to .

The harmonic support for mm. 19-21 includes passing chords, interpolated progressions, neighbor chords, and contrapuntal chords.

Jarrett starts the progression in m. 19 with a , but instead of proceeding to and supporting the melodic with a , he reinterprets the as the 9th of . This substitution called “side-stepping” is idiomatic in jazz practice. However, by introducing , Jarrett launches a temporary tonicization of Bm, before returning to B on beat four of m. 20. Since the preparation for C in m. 19 is quite obvious, it is conceivable to venture that - functions as a substitute for C. Incidentally, the same harmonic preparation – but with a “proper” resolution – occurs in m. 30, and, again in a transposed version in m. 33 and m. 35.
The design of the melody and the choice of underlying harmonies in mm. 22-27 demonstrate strong blues affinities. In this section, Jarrett utilizes a number of stylized harmonic conventions, including blues/gospel, mainstream, and modal practices. Measure 22 begins with an \(<a^b - g^>\) gesture in the soprano and is harmonized by two dominant 7th chords in third inversion, D\(_{b9}\) and C\(_9\), respectively. The structure of these chords resembles the blues/gospel tradition. Jarrett achieves an original synthesis by taking ordinary chords and arranging them in an unusual manner. This relatively simple technique opens avenues for exploring various voicing possibilities.

A fifth-progression beginning on a rootless E\(_{7alt}\) on beat two of m. 22, however, exhibits different characteristics from those typical of mainstream and modal jazz. The structure of an eight-voice verticality (beat two of m. 22) includes three secondary extensions f\(_1-b^9\), b\(_b^1-#11\), and c\(_9^2-13\) and shows correspondence to the Altered b\(_9\) hexamode from the rDNC on E. The continuation of the fifth progression features Asus\(_7\), Dsus\(_7(b9)\), and G\(_7(#11)\). Whereas m. 22 relates to the F major tonality, m. 23 explores the parallel minor key. Jarrett uses G\(_7(#11)\) as a pivot chord to access B\(_bm\(_{ma7}\) on the second beat of m. 23. The voicing of G\(_7(#11)\) at the beginning of m. 23 includes three adjacent tritones <G-b\(_b\), <f-b>, and <b-f\(_1\)>. The absence of typical jazz structures makes this segment quite unconventional. It seems that Jarrett introduces an important dichotomy between a simple, mostly blues oriented soprano, and an intricate harmonic vocabulary to accompany it. He often supports the direction of the melody with parallel chords (m. 23), or utilizes contrary motion between the soprano and the bass (m. 26).

The homophonic texture in mm. 23-26 displays a strict hierarchy between passing and fundamental harmonies. The B\(_bm\(_{ma7}\) in m. 23 occupies three beats (2-4) and matches with the original harmony (m. 9 of the original version, as shown in Example 5.2). The structure of three voicings in m. 23 reveals interesting intervallic properties. The inner voices include a cluster of major 2nds transposed up by step. These inner clusters maintain parallel motion with the soprano line. E\(_b^2\) in m. 24 constitutes the melodic goal of the soprano ascent and its harmonic support is an upper chromatic neighbor of Dsus\(_7\). The notes of the sonority on beats 1 and 3 of m. 24 suggest E\(_b\) Lydian.\(^{120}\) The resolution to a more stable Dsus\(_7\) displays a perfectly executed voice-leading motion. Two beats later, A\(_b^7(13)\) becomes the tritone substitution of D\(_{7alt}\).

A return to F minor in m. 26 is preceded by a Csus\(_{7(b9,b13)}\) whose secondary extensions (d\(_b^1\) and a\(_b^1\)) emphasize the minor quality of the underlying progression. Measure 26 includes a blues riff \(<a^b - f - a^b - b^1 - a^b - f^1 - f^1>\), still occurring within F minor. The structure of the minor tonic, however, becomes less transparent due to its unusual voicing and a saturation of chromatic pitches. A deceptive resolution to D\(_{b}^7ma^9\) in m. 27 further emphasizes the minor mode of the progression. A change to a B\(_b^7/D\) on the second beat of m. 27 finishes the transition and anticipates the arrival of B\(_b^7ma^9\) at the beginning of the departure section. A voice-leading reduction of mm. 19-27 is given in Figure 5.17.

\(^{120}\) Another analytical reading can recognize the structure in question as rootless F\(_7\) formations. Such a reading emphasizes the occurrence of dominant 7th chords with chordal roots delineating d, f, a\(_b^\) – an incomplete diminished 7th chord equally dividing the octave.
The departure further explores the dichotomy between the main key areas, utilizes large harmonic structures, and emphasizes blues components within the melody. Jarrett develops the governing tonal centers more thoroughly and avoids unexpected harmonic shifts. This gives the whole departure a nearly periodic phrase structure. A general outline of the departure section is as follows: mm. 28-30 are in F major; mm. 31-37 feature a motion from D minor through B♭m (iv of i) and F major to B♭7; mm. 38-41 explore D minor with strong blues inflections and resolve to G7 in m. 41; and, mm. 41-45 expand G7 via complex chordal structures which fill out the dominant space with passing chords, tritone-related and fifth-related harmonies. The melodic stratum for mm. 41-45 is derived from F minor; however, the underlying chords, with the exception of a fleeting reference to F minor (beat 4 of m. 44), suggest a different harmonic environment.

Measures 28-31 transform the IV-ii7-V7-I progression, the structure of which can be represented by Phrase Model 3. Incidentally, this progression constitutes a major variant of the B section of the tune, a iv-i-ivii7-V. Jarrett, by placing the material in F major, stresses the importance of this particular key area. The accompanying diatonic melody features an arpeggiation of F6 in mm. 28-29, as well as a stepwise descent 3-2-1 in m. 30. The soprano
notes become either extensions or chord tones of corresponding chords: a\(^1\) and c\(^2\), the 7\(^{th}\) and 11\(^{th}\) of B\(^b\)ma\(^7\) and Gm\(^{11}\); d\(^2\) and f\(^2\), the 3\(^{rd}\) and b9\(^{th}\) of Bm\(^{11}\) and E\(^7\)alt; and c\(^2\) and f\(^1\), the 3\(^{rd}\) of Am\(^{b13}\) and Dm\(^{11}\). The harmonic progression for the segment in question contains one of Jarrett’s favorite devices, an interpolated ii-V progression beginning on G\(^#\)4. The distance from ii\(^7\) to V in m. 30 utilizes contrary motion between outer voices and passing chords. After reaching the dominant harmony in m. 30, Jarrett makes a sudden shift to D minor.

The soprano line in mm. 31-36 is derived from the F blues scale. This melodic organization enables Jarrett to explore D minor, B\(^b\) minor, and F major. On the one hand, his harmonic choices are directly related to the structure of the tune that emphasizes the role of the fourth span, <a\(^1\), b\(^1\), c\(^#2\), d\(^2\)>, (see Figure 5.14). On the other, they result from contrary motion between outer voices and the motivic design of the bass voice. Figure 5.18 shows the outer-voice counterpoint and an ascending fourth span in the bass.

Figure 5.18

Come Rain Or Come Shine - (mm.31-35)

The design of the outer-voice counterpoint (mm. 31-35) illustrates the use of consonances on the downbeats and dissonances on the weak beats. The bass stratum features the same fourth span in mm. 32, 33, and 35, transposed down a perfect fourth. The treatment of blue notes demonstrates the remarkable flexibility with which Jarrett utilizes different harmonic formations.
For instance, e^b_2 in m. 32 is the 3rd of $C^b_m^7$, whereas in m. 33 the same note is supported with a passing chord.

The highest note of the entire introduction, a^b_2, receives special harmonic treatment. In m. 31, an eight-voice structure consists of F minor triad in the right hand superimposed over an $A^{7(13, b9)}$. The justification for the occurrence of a^b_2 (the major 7th of A^7) stems from the overall characteristics of the soprano line, the design of the outer-voice counterpoint, and most importantly, the resolution to the subsequent chord. It is within the context of its stepwise resolution to a “stable” $B^b_m^{9(b6)}$ that this polychordal structure should be examined. Note that the behavior of inner voices follows the rule of stepwise voice leading, a trademark of “Jarrett’s style.” The treatment of a^b_2 in m. 38 and later in m. 44 in much more conventional. Whereas in m. 38, a^b_2 is the “blue 5th,” of Dm9, in m. 44 it is the root of $A^{b7(13)}$.

Measures 36-45 continue to juxtapose blues elements over complex harmonic formations and unify the governing tonal areas, F major, F minor, and D minor, into polychordal wholes. For instance, in mm. 38-39, D minor, by way of chromatic neighbors, becomes Dma$^{7(#11)}$ and then D7 (beats 3 and 4 of m. 38). At the same time, the soprano line delineates the Fm7 chord. Measure 39 merges members of D minor and F minor into a single chordal structure. The guide tones of F minor are superimposed over the root of D minor, while the 3rd and 4th of D minor occur in the inner voices. The left hand content in m. 40 spells out D minor; beat 3 of the same measure includes the guide tones of F minor. The right hand places an $<a^b,b^b,e^b_1>$ trichord, whose members suggest an Fm11, over D minor.

Measures 41-45 expand a G7 chord – a highly stylized “gospel” sonority – via a number of chromatic structures which held a prominent place in the introduction, including a modified D in m. 42, A^{b7}/E^b in m. 42, and Fm$^{7(b6)}$ in m. 43. Figure 5.19 presents a voice-leading reduction of the departure section.

Figure 5.19

Come Rain Or Come Shine - Departure

![Musical notation image]

IV ii ii vi Ib_7 V7 I vi ii V
Codetta mm. 46-51

The codetta features a dominant pedal point and prepares the arrival of the “head.” The reiterations of c1 in the alto voice not only establish the underlying tempo but also make reference to the repeated nature of the melody. The juxtaposition of the melodic b1 in the soprano over a C7 harmony adds pungency to its structure.121

Although the introduction to “Come Rain Or Come Shine” is more continuous than the introduction to “Stella By Starlight,” both, arguably, have similar formal designs that correspond to Bach’s description of free fantasy with respect to their overall key distribution, and the development of a limited number of salient ideas. It seems that Jarrett has a keen sense for this particular formal model. Although the introduction to “Stella By Starlight” lasts 3’20”, and “Come Rain Or Come Shine” 2’40”, both have almost identical number of measures (fifty one in “Stella By Starlight” and forty nine in “Come Rain Or Come Shine”). The climax in each of the two occurs at approximately the same time (i.e. toward the end of the departure). Since the two introductions can be codified to some extent, we may posit a general paradigm for improvising similar introductions over different tunes.

Stylistic Introduction – Paradigm

To demonstrate a practical aspect of the aforementioned analysis, we can create our own introduction in “Jarrett’s style” based on a set of rules and conditions that emerge from the previous discussion. To that end, we will use a ballad by George and Ira Gershwin, “Embraceable You.”

First, let us summarize how the two introductions are organized.

1. Exordium – a brief précis of the salient melodic and harmonic features of the tune (optional).
 a. This stage involves analysis of the tune for its prominent motivic and harmonic components.
 i. The design of most standards includes a limited number of motivic cells and harmonic phrase models undergoing various harmonic, contrapuntal and/or rhythmic developments throughout the tune.
 b. Since Jarrett often reharmonizes the original harmonic progression by introducing departures from the main key, it is worthwhile to examine the harmonic structure of the tune and determine where a logical branching off from the key could be advanced. Departures that implement motivic relationships derived from the tune establish compositional connections between the structure of the tune and the improvised introduction.

2. Presentation – an interplay between cantus firmus and free fantasy.
 a. Presents a cantus firmus within a new harmonic setting.
 i. This may include placing the cantus firmus in inner voices while a contrapuntal line develops the melodic material using various

121 We can even use this example to justify the use of the major 7th over the dominant 7th. The presence of the major 7th is accepted given its preparation and resolution.
compositional techniques such as inversion, rhythmic diminution/augmentation, replacement, deletion, insertion, and the like.

b. Weaves in free fantasy elements by making tonal departures to new tonal areas.
 i. As mentioned before, these departures may explore motivic relationships between melodic and harmonic formations.

3. Transition – connects the presentation and the departure sections.
 a. Repeats salient harmonic or melodic events from the presentation or the exordium over a freely improvised melody or harmonic background.
 b. Contains a more complex harmonic vocabulary.

4. Departure – develops a limited number of salient motivic or harmonic ideas from the presentation.
 a. Reworks these ideas in a compositional fashion.
 i. Devices such as 1) interpolated ii-V progressions, 2) the reinterpretation of melodic notes as members of substitute chords, and 3) various tritone substitutions are implemented.

5. Return – makes a brief reference to the original material of the exordium.

6. Codetta – anticipates the arrival of the tune by introducing a pedal point.

This outline constitutes one of many possibilities for formal construction that could serve as a blueprint for improvisation. In addition to improvising melodic and harmonic content, we can also engage in improvising different formal outlines. Since each standard has unique characteristics, a proposed outline would include these traits as formal determinants. It is interesting to note that the general concept for this plan corresponds to Bach’s discussion of free fantasia. As Bach pointed out, the improvisation of free fantasia “…requires only a thorough understanding of harmony and acquaintance with a few rules of construction.” Similarly in jazz, the introductions to standards can not only serve as fantasias before the band comes in, but also can stand on their own as independent pieces with clearly discernible formal structures and compositional logic. The application of composition techniques in developing harmonic and melodic elements bridges the gap between improvisation and composition. Such an approach to improvisation that requires aptness for both harmonic and formal considerations on the performer’s part, constitutes an interesting subject worthy of theoretical inquiry and practical application.

To close this chapter, I include a transcription with commentary of my own improvised introduction in “Jarrett’s style” based on “Embraceable You” by George and Ira Gershwin (for the lead-sheet version consult *The Standards Real Book*, Sher Music CO., 2000, p. 129).

The transcription of the solo, given in Example 5.4, demonstrates one of many possibilities for an effective prelude-like introduction. It is worth pointing out that the process of improvising solo introductions follows a well-established hierarchy in which formal considerations stand out as the most important. Other factors such as, harmony and/or counterpoint, though critical at the local level, are at the service of the improvised formal structure.

Example 5.4

122 C.P.E. Bach, ibid., p. 430.
Solo introduction in "Jarrett's Style"

Transcribed by Dariusz Terefenko

Rubato

Exordium

Presentation
Conclusion

Theorizing about the nature of jazz improvisation is a challenging undertaking. Whether or not Jarrett’s improvisations are the result of inspiration or precompositional planning, the analysis of his transcriptions enables us to appreciate the idiosyncrasies of his style and the complex ways in which he thinks about standard tunes. Such analysis clearly demonstrates two essential features of Jarrett’s approach to jazz improvisation: his ability to make large-scale harmonic and melodic connections with the original version of the standard and his sophisticated sense of formal organization.

Further research might venture in a number of directions. First, phrase models may be expanded to include different styles of music, such as modal jazz or jazz-rock. Similarly, it is important to investigate other formal prototypes, not just the AABA and ABAC schemes. Early jazz, for instance, offers a number of unconventional, yet very integrated formal types that may qualify for an interesting study. The Hexamodal System was introduced as a model for harmonic organization of various hexamodal collections. An obvious expansion of the system would include the analysis of its horizontal potentials, namely the construction of solo lines.

Second, statistical analysis of “It Never Entered My Mind” and “Stella By Starlight,” shown in Chapter 4, can be further advanced and include other standard tunes to obtain an even more comprehensive account of Jarrett’s harmonic proclivities.

Third, the basic analytical methodology used to analyze Jarrett’s improvisational processes can be applied to other jazz artists. With respect to Jarrett’s music, however, the next step in a life-long research includes the application of similar methodologies to the structure of his extended piano solo concerts. Since these pieces are claimed to be entirely extemporized, the presence of large-scale harmonic and melodic relationships at various levels of musical structure would contribute to even greater comprehension of Jarrett’s improvised music.
APPENDIX A

Phrase Model 1 - [I-ii\(^7\)-V\(^7\)]- (||)-ii\(^7\)-V\(^7\)-(I)

[Diagram of musical notation]

Cadential Closure
MAJOR

<table>
<thead>
<tr>
<th>HD</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>VI</td>
</tr>
<tr>
<td>I'm Through with Love</td>
<td>Taking a Chance on Love</td>
</tr>
<tr>
<td>It’s Talk of the Town</td>
<td>With a Song in My Heart**</td>
</tr>
<tr>
<td>Between the Devil and the Deep Blue See</td>
<td>Embraceable You**</td>
</tr>
</tbody>
</table>

**These tunes are based on the ABAC form.

MINOR

<table>
<thead>
<tr>
<th>HD</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>You and the Night and the Music</td>
<td>Yesterdays</td>
</tr>
</tbody>
</table>
Phrase Model 2 - [ii\(^7\)-V\(^7\)]-(||)-ii\(^7\)-V\(^7\)-(I)
<table>
<thead>
<tr>
<th>MAJOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

** - These tunes are based on the ABAC form.
(B) – B section of the ABAC form.
(A’) – second A section of the AABA form.
Phrase Model 3 - [IV-ii7-V7]-(IV)-ii7-V7-(I)

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>HD</th>
<th></th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>bVI</td>
<td>bII</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>Just Friends**</td>
<td>All The Things You Are</td>
<td>But Not For Me**(B)</td>
<td>Almost like Being in Love</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Remember</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>What is This Thing Called Love*</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>After You’ve Gone</td>
</tr>
</tbody>
</table>

* The tune begins with tonicization of iv.
**These tunes are based on the ABAC form.
(B) The B section of the ABAC form.
Pharse Model 4 - [I-vi7-ii7-V7]-||-ii7-V7-(I)
<table>
<thead>
<tr>
<th>HD</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>VI</td>
</tr>
<tr>
<td>Ain’t Misbehavin*</td>
<td>Bewitched*</td>
</tr>
<tr>
<td>Blue Room</td>
<td>I Can’t Get Started</td>
</tr>
<tr>
<td>But Not For Me**</td>
<td>Time After Time**</td>
</tr>
<tr>
<td>Easy Living*</td>
<td>Easy Street</td>
</tr>
<tr>
<td>The Touch of Your Lips**</td>
<td></td>
</tr>
<tr>
<td>It’s Only a Paper Moon</td>
<td></td>
</tr>
<tr>
<td>Mean to Me</td>
<td></td>
</tr>
<tr>
<td>These Foolish Things</td>
<td></td>
</tr>
<tr>
<td>You Took Advantage of Me</td>
<td></td>
</tr>
<tr>
<td>Young and Foolish**</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Tunes feature a chromatic alteration of the fundamental I-VI-II-V progression.
** Tunes are based on the ABAC form.
Phrase Model 5 - [vi7]-(I)-(ii7)-V7-(I)

Initial Projection Harmonic
Departure

vi7 ii7 V7 I7 6

Cadential Closure

<table>
<thead>
<tr>
<th>HD</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>III</td>
</tr>
<tr>
<td>Lover Man</td>
<td>How Deep is the Ocean**</td>
</tr>
<tr>
<td>If I Should Loose You**</td>
<td>Fly me to the Moon**</td>
</tr>
<tr>
<td>VI</td>
<td>II</td>
</tr>
<tr>
<td>Fly me to the Moon**</td>
<td>Cry Me a River</td>
</tr>
<tr>
<td>I Cover a Waterfront</td>
<td>I Hear a Rhapsody</td>
</tr>
<tr>
<td>II</td>
<td>I’ve Found a New Baby</td>
</tr>
<tr>
<td>I’t’s Explain</td>
<td>I’ve Found a New Baby</td>
</tr>
</tbody>
</table>

**Tunes are based on the ABAC form.
Phrase Model 6 - [I-iii7-VI7-ii7]-(| |)-ii7-V7-(I)

**Tunes are based on the ABAC form.
Phrase Model 7 - [(I)-vii7-(III7)-vi7]-(| |)-ii7-V7-(I)

Initial Projection Harmonic Departure

\[\begin{array}{c|c|c}
\text{I}^7 & \text{vii7} & \text{iii7} \\
\text{(III7)} & \text{vi7} & \text{ii7} \\
\text{(ii7-V7)} & & \text{V7} \\
\end{array} \]

Cadential Closure

These tunes are based on the ABAC form.

<table>
<thead>
<tr>
<th>HD</th>
<th>MAJOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>IV</td>
<td>The Masquerade is Over</td>
</tr>
<tr>
<td>II</td>
<td>Come Rain or Come Shine**</td>
</tr>
<tr>
<td>III</td>
<td>Ill Wind</td>
</tr>
<tr>
<td>VI</td>
<td>On the Sunny Side of the Street</td>
</tr>
<tr>
<td></td>
<td>I Should Care**(B)</td>
</tr>
<tr>
<td></td>
<td>I Didn’t Know What Time It Was</td>
</tr>
<tr>
<td></td>
<td>There Will Never Be Another You**</td>
</tr>
</tbody>
</table>

** These tunes are based on the ABAC form.
Phrase Model 8 - [I-IV\(^7\)-iii\(^7\)-vi\(^7\)]-(| |)-ii\(^7\)-V\(^7\)-(I)

MAJOR

<table>
<thead>
<tr>
<th>IV</th>
<th>II</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ev’rything I Love**</td>
<td>Over the Rainbow</td>
<td>Dancing on the Ceiling</td>
</tr>
<tr>
<td>I’ve Grown Accustomed to Her Face</td>
<td>Teach Me Tonight</td>
<td>Once in A While</td>
</tr>
<tr>
<td>The Nearness of You</td>
<td>I Loves You Porgy</td>
<td>Where Are You</td>
</tr>
<tr>
<td>I Thought About You**</td>
<td>There is no Greater Love</td>
<td>Lady be Good</td>
</tr>
<tr>
<td>My Romance**</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These tunes are based on the ABAC form.
Phrase Model 9 - [I-iii7-IV7]-([I])-ii7-V7-(I)

Initial Projection

Harmonic Departure

Cadential Closure

MAJOR

<table>
<thead>
<tr>
<th>HD</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>bIII</td>
<td>VI</td>
</tr>
</tbody>
</table>

| You Go to My Head | A Nightingale Sang In Berkeley Square |
Phrase Model 10 - [I-^bVII^7-bIII^7-bVI]-(| |)-ii^7-V^7-(I)

Initial Projection | Harmonic Departure

MAJOR HD

<table>
<thead>
<tr>
<th>IV</th>
<th>No HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>You Stepped Out of a Dream</td>
<td>We’ll Be Together Again**</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**This tune can be analyzed as based on Phrase Model 1 with a harmonic departure on bVI.
Phrases Model 11 - \([I-biii^7-bVI^7]-[\mid \mid]-ii^7-V^7-({I})\)

Initial Projection

Harmonic Departure

Cadential Closure

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>VI</td>
<td>II</td>
</tr>
<tr>
<td>Darn That Dream</td>
<td>Out of Nowhere**</td>
</tr>
</tbody>
</table>

The tunes are based on the ABAC form.
Phrase Model 12 - \([I-(ii^7-V^7)-bVII-(ii^7-V^7)-bVI]-(| |)-ii^7-V^7-(I)\)

The tunes are based on the ABAC form.
Phrase Model 13 - \([I-(ii^7-V^7)-III]-(||)-ii^7-V^7-(I)\)

\[
\begin{array}{c}
\text{Initial Projection} \\
\wedge 3 & \wedge \#2
\end{array}
\quad
\begin{array}{c}
\text{Harmonic} \\
\text{Departure}
\end{array}
\quad
\begin{array}{c}
\wedge 2
\end{array}
\quad
\begin{array}{c}
\wedge 1
\end{array}
\]

\[
\begin{array}{c}
I^7 \quad (ii^7-V^7) \to III^7 \\
vi^7 \\
ii^7 \\
V^7 \\
I^7 \to 6
\end{array}
\]

\[
\text{Cadential Closure}
\]

<table>
<thead>
<tr>
<th>MAJOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>HD</td>
</tr>
<tr>
<td>II</td>
</tr>
<tr>
<td>I’m Getting Sentimental Over You</td>
</tr>
<tr>
<td>You’ve Changed</td>
</tr>
<tr>
<td>Someday, You’ll Be Sorry</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

***First “A” section.
(B) - B section of the ABAC form
** The tunes are based on the ABAC form.
Phrase Model 14 - III\(^7\)-VI\(^7\)-II\(^7\)-(I)

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>HD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bridge</td>
<td>VI</td>
</tr>
<tr>
<td>Rhythm Changes Tunes</td>
<td>Sweet Georgia Brown**</td>
</tr>
<tr>
<td>Don’t Be That Way</td>
<td></td>
</tr>
<tr>
<td>I’ve Got the World on a String</td>
<td></td>
</tr>
<tr>
<td>Yesterday</td>
<td></td>
</tr>
</tbody>
</table>

** The tunes are based on the ABAC form.
APPENDIX B

THE AABA FORM – MONOTONAL DESIGN

Monotonal Design

Phrase Model(1) Phrase Model(1/var) Phrase Model(2) Phrase Model(1)

I ———— ii-V | I ———— I ———— (ii-V)/X | X ———— X ———— (ii-V)/I | I ———— I

A A B A

BRIDGE

Key of the Bridge – Subdominant (IV)

1. Broadway*
2. Don’t Blame Me
3. Don’t Get Around Much Anymore
4. Easy Street
5. Exactly Like You
6. Have You Met Miss Jones?
7. I Remember You
8. I’ll Be Around
9. I’m Confessin’*
10. I’m Glad There Is You
11. I’ve Never Been In Love Before
12. Imagination
13. It Might As Well Be Spring
14. It’s Only A Paper Moon
15. Just You, Just Me*
16. Lady Be Good
17. Mean To Me
18. My Monday Date*
19. On A Clear Day*
20. Skylark
21. Someone To Watch Over Me
22. Stormy Weather
23. Sweet Loraine
24. Take The ‘A’ Train*
25. Taking A Chance On Love*
26. The Surrey With The Fringe On Top
27. There’s Small Hotel
28. What’s New
29. Why Can’t I?*
30. You Go To My Head
31. You’ve Changed

In tunes marked by an “*” IV is reached by arrival.

Key of the Bridge – Mediant (III)

1) A Nightingale Sang In Berkeley Square
2) Am I Blue
3) Between The Devil And The Deep Blue Sea
4) I Loves You Porgy
5) I Never Knew
6) I’m Getting Sentimental Over You
7) I’m Through With Love
8) If You Could See Me Now
9) Ill Wind
10) Memories Of You
11) Moonlight In Vermont
12) Once In A While
13) Polka Dots And Moonbeams
14) Rosetta
15) Stars Fell On Alabama
16) These Foolish Things
17) They Can’t Take Away From Me
18) You Do Something To Me

Key of the Bridge – Submediant (VI)

1) Ain’t Misbehavin’
2) Let’s Fall In Love
3) There Is No Greater Love
4) This Can’t Be Love
5) Where Or When
6) You Took Advantage of Me
Key of the Bridge – Lowered Mediant (bIII)

1) Crazy He Calls Me*
2) Flamingo*
3) My Old Flame
4) Softly, As In A Morning Sunrise
5) When Lights Are Low*
6) You Don’t Know What Love Is*

In tunes marked by an “*” bIII is reached by arrival.

Key of the Bridge – Lower Submediant (bVI)

1) Angel Eyes*
2) Darn That Dream
3) Dream A Little Dream of Me
4) Easy Living
5) Smoke Gets In Your Eyes
6) You And The Night And The Music

In tunes marked by an “*” bVI is reached by arrival.

Key of the Bridge – Super Tonic (II)

1) Bewitched
2) I Can’t Get Started*
3) It’s The Talk Of The Town
4) Somebody Loves Me

In tunes marked by an “*” II is reached by arrival.

Key of the Bridge – b Super Tonic (bII)

1) Body and Soul
2) Do I Love You
Key of the Bridge – IV

1) Born To Be Blue*
2) Warm Valley

In tunes marked by an “*” #IV is reached by arrival.

Key of the Bridge – Tonic (I)

1) A Ghost Of A Chance*
2) I Cover The Waterfront*
3) I Hadn’t Anyone Till You*
4) It Never Entered My Mind
5) My Ship*
6) Teach Me Tonight*
7) The Blue Room*
8) The Masquerade Is Over*
9) We’ll Be Together Again*

In tunes marked by an “*” I is reached by arrival.

Key of the Bridge – Dominant (V)

1) Lucky To Be Me

THE AABA FORM – OFF-TONIC DESIGN

Off – Tonic

Phrase Model(1)	Phrase Model(1)	Phrase Model(2)	Phrase Model(1)
(X)———ii-V-I|x———I–(ii-V)/X|X———X–(ii-V)/x|x———ii-V-I

A A B A
Key of the Bridge – Subdominant

2) All My Tomorrows
3) Everything Happens To Me*
4) Honeysuckle Rose*
5) How Long Has This Been Going On?
6) I Didn’t Know About You*
7) It’s Easy To Remember*
8) Satin Doll*
9) Why Try To Change Me Now?*
10) You Are Too Beautiful

In tunes marked by an “*” IV is reached by arrival.

Key of the Bridge – Mediant (III)

1) Cry Me A River
2) I Hear A Rhapsody
3) Prelude to A Kiss

Key of the Bridge – Submediant (VI)

1) Nancy
2) Nice Work If You Can Get It

Key of the Bridge – Lowered Mediant (bIII)

1) Night And Day

Key of the Bridge – Lower Submediant (bVI)

1) In A Sentimental Mood

Key of the Bridge – Tonic (I)

1) I Didn’t Know What Time It Was
2) I Love You*

In tunes marked by an “*” I is reached by arrival.
Key of the Bridge – Subtonic (VII, bVII)

1) All The Things You Are*
2) What Is This Thing Called Love*
3) Sophisticated Lady

In tunes marked by “*” VII/bVII is reached by arrival.

THE ABAC FORM – MONOTONAL DESIGN

Monotonal

Phrase Model(1) Phrase Model(2) Phrase Model(1) Phrase Model(3)

I———(ii-V)/X|X———(ii-V)/I|I———(ii-V)/X|X———ii-V-I

A B A C

Phrase Model (1) Phrase Model (2)

A B

Key of the B Section – Subdominant (IV)

1) A Foggy Day*
2) Blame It On My Youth
3) But Not For Me
4) Like Someone In Love
5) Love Walked In
6) There Will Never Be Another You
7) Who Can I Turn To?
8) Witchcraft
9) You Stepped Out Of A Dream*

In tunes marked by an “*” IV is reached by arrival.
Key of the B Section – Tonic (I)

1) Dancing In The Dark
2) Days Of Wine And Roses
3) Ev’ry Time We Say Goodbye
4) Everything I Love
5) For All We Know
6) I Fine Romance
7) I Could Write A Book
8) It Could Happen To You*
9) Sometimes I’m Happy
10) Soon
11) Summertime
12) The Touch Of Your Lips*
13) You’ll Never Know
14) You’re My Everything

In tunes marked by an “*” I is reached by arrival.

Key of the B Section – Super Tonic (II)

1) Deep Purple*
In tunes marked by an “*” II is reached by arrival.

Key of the B Section – Submediant (VI)

1) Embraceable You
2) I’ll Be Seeing You
3) It Had To Be You
4) Time After Time
5) What A Difference A Day Made
6) With A Song In My Heart
The ABAC Form – Off-Tonic Design

Off – Tonic

Phrase Model(1) Phrase Model(2) Phrase Model(1) Phrase Model(3)

(x)———(ii-V)/X|X———X—(ii-V)/x|x———(ii-V)/X|x———ii-V-I

A B A C

Key of the B Section – Subdominant (IV)

1) Fascinating Rhythm

Key of the B Section – Mediant (III)

1) Embraceable You*
2) Gone With The Wind
3) Love Is Here To Stay
In tunes marked by an “*” III is reached by arrival.

Key of the B Section – Submediant (VI)

1) Day By Day*
2) I’ve Found A New Baby*
In tunes marked by an “*” VI is reached by arrival.
Key of the B section – Tonic (I)

1) All Of You
2) Dearly Beloved
3) How Deep Is The Ocean*
4) I Should Care
5) I Wish I Knew*
6) I’ll Never Smile Again*
7) My Funny Valentine
8) You’d Be So Nice To Come Home To

In tunes marked by an “*” I is reached by arrival.

Key of B section – Lower Mediant (bIII)

1) It’s You Or No One*

In tunes marked by an “*” bIII is reached by arrival.
APPENDIX C

BIBLIOGRAPHY

Dobbins, Bill. *A Creative Approach to Jazz Piano Harmony.* Rottenberg, Germany; Advance Music, 1994

Harker, Brian, “‘Telling a Story’: Louis Armstrong and Coherence in Early Jazz.” *Current Musicology* 63: 46-83

____________. “Schenkerian Analysis of Modern Jazz.” Ph.D. diss., University of Michigan, 1987
__________. “Schenkerian Analysis of Modern Jazz: Question About Method,”

__________. “Swing and Motive in Three Performances by Oscar Peterson.”
Journal of Music Theory 43/2 (Fall 1999): 283-314

__________. “The Art of Charlie Parker’s Rhetoric.” Annual Review of Jazz
Studies 8 (1996): 141-156

__________. “Triple Play: Bill Evans’ Three-Piano Performance of Victor
Young’s ‘Stella by Starlight.’” Annual Review of Jazz Studies 9 (1997): 45-56

__________. Reviews of The American Popular Ballad of the Golden Era, 1924
1950, by Allan Forte; The Music of Gershwin, by Steven Gilbert; and Charlie Parker and

Martin, Henry. “Jazz Harmony: A Syntactic Background.” Annual Review of Jazz

__________. “Jazz Theory: An Overview.” Annual Review of Jazz Studies 8
(1996): 1-17

__________. Charlie Parker and Thematic Improvisation. NJ: Scarecrow
Press, 1996

__________. “Exampli Gratia: As You Like It (Chord Substitution in Ellington’s
“Satin Doll”),” In Theory Only 1 (1975): 37

Milton, Lee. “Structural Development in the Jazz Improvisational Technique of

Monson, Ingrid. “Doubleness and Jazz Improvisation: Irony, Parody, and

__________. Saying Something: Jazz Improvisation and Interaction. Chicago:
University of Chicago Press, 1996

University of California, Los Angeles, 1974

Russell, George Allan. The Lydian-Chromatic Concept of Tonal Organization for Improvisation, for All Instruments. New York: Concept Publishing Corp., 1959

Schenker, Heinrich. *Neue Musikalische Theorien and Phantasien*

APPENDIX D

FAKE BOOKS REFERENCES

The Standards Real Book, Sher Music CO., 2000

Real Book 1
APPENDIX E

SELECTED DISCOGRAPHY

Jacoby, Don. *Don Jacoby and the College All-Stars, Swinging Big Sound* (Decca DL-4241, 1962)

Lloyd Charles. *1967. 4th International Jazz Festival – Praha ’67*

Lloyd Charles, *Soundtrack* (Atlantic SD 1519, 1968)

Davis, Miles. *Direction* (Columbia Records KC 36472, 1970)

Davis, Miles. *Miles Davis At The Fillmore* (Columbia Records G 30038 C, 1970)

Davis, Miles. *Get Up With It* (Columbia Records KG 33236, 1970)

Massey, Barbara & Ernie Calabria. *Prelude to Barbara and Ernie* (Cotillon, SD 9044, 1972)
Davis, Miles. *Miles Davis – Isle of Wight, Atlanta Pop Festival*, (CBS G 3X-30805, 1970)

Davis, Miles. *Live Evil*, (Columbia Records C 30955/56, 1972)

Williams, Marion. *Marion Williams*, (Atlantic SD 8289, 1971)

Leace, Donald. *Donald Leace*, (Atlantic SD 7221, 1971)

Jarrett, Keith. *Expectations* (Columbia KG 31580, 1972)

Jarrett, Keith. *Facing You* (ECM 1017 ST, 1972)

Moreira, Airto. *Airto Free* (CTI 6020, 1972)

Hubbard, Freddie. *Sky Dive* (CTI 6018, 1972)

Motian, Paul. *Conception Vessel* (ECM 1028, 1973)

Jarrett, Keith. *In the Light* (ECM 1033/34 ST, 1973)

Jarrett, Keith. *Solo Concerts, Bremen / Lausanne* (ECM 1035/36/37 ST, 1973)

Jarrett, Keith. *Luminessence* (ECM 1049, 1974)

Jarrett, Keith. *Bop-Be* (Impulse IA- (334, 1978)

Jarrett, Keith. *Arbour Zena* (ECM 1070, 1975)

Haden, Charlie. *Closeness* (Horizon SP 170, 1976)

Jarrett, Keith. *The Survivor’s Suite* (ECM 1085, 1976)

Jarrett, Keith. *Hymns Spheres* (ECM 1086, 1976)

Peacock, Gary. *Tales of Another* (ECM 1101, 1977)

Jarrett, Keith. *Nude Ants* (ECM 1171/2, 1979)

Jarrett, Keith. *Changess* (ECM 1276, 1983)
Jarrett, Keith. *Still Live* (ECM 1360/1, 1986)
Jarrett, Keith. *Changeless* (ECM 1392, 1988)
Jarrett, Keith. *The Vienna Concert* (ECM 1481, 1992)

Jarrett, Keith. *Bye, Bye Blackbird* (ECM 1467, 1993)

Jarrett, Keith. *At the Deer Head Inn* (ECM 1531, 1994)

Jarrett, Keith. *Bridge of Light* (ECM 1450, 1994)

Jarrett, Keith. *La Scala* (ECM 1640, 1997)

Jarrett, Keith. *Inside Out* (ECM 1780, 2000)

Jarrett, Keith. *Yesterdays* (ECM 2060, 2001)
